

SRI VENKA	ATESWARA VIDHYA	MANDHIR HIGHE	R SECONDARY SCHOOL THALI	KKOTTAI
SUB : MATHEMATIC	es .		MARKS: 100	
CLASS: XI			TIME : 3.00 hrs	
Instructions:	is any lack o	f fairness, inform the Black ink to write an	ness of printing. If there e Hall Supervisor immediately. and underline and pencil to	
		SECTION - I		
Note: (i)	All questions are co	ompulsory.	$20 \times 1 = 20$	
(ii)	Choose the correct alternatives Write t	or most suitable ansv he option code and t	wer from the given four he corresponding answer.	
1. If two sets A and set $A \times B$ and B (1) 2^{17}	d B have 17 elements		number of elements common to the (4) insufficient data	
2. If R is the set of	f all real numbers and	if $f \cdot \mathbb{R} = \{3\} \rightarrow \mathbb{R}$ is de	efined by $f(x) = \frac{3+x}{3-x}$ for	
$x \in \mathbb{R} - \{3\}$, then (1) \mathbb{R} 3. If the sum and provide of a is	the range of f is $(2) \mathbb{R} - \{1\}$	(3) ℝ−{−1}	3-1	
(1) 1 4. Which one of the (1) $ \sin x \le 1$ (3) $ \cos x \le 1$ 5. $\cos 1^{\circ} + \cos 2^{\circ} + \cos (1) = 0$	(2) 2 e following is not true? $s3^{\circ} + \cdots + cos179^{\circ} is$ (2)1	(2) $ \sec x < 1$ (4) $\csc x \ge 1$ or c	$(4) 4$ $\cos \operatorname{ec} x \le -1$	
	(Z)I	(3)-1	(4) 89	
The state of the s	total number of poin	t no two of them are puts of intersection are	(4) 89 arallel and no three are	
7. The remainder wh	(2) 40 nen 2 ²⁰²⁰ is divided by 1	(3) 101	(4) 2 ¹⁰	
(1) 4	(2) 8	(2) 1	(4) 2	
	n of two positive numb	pers whose arithmetic	(4) 2 mean and geometric mean are	
(1)10	: (2)6	(3)5	(4)4	
9. In the equation of	a straight line $ax + by +$	c = 0, if a, b, c are in a	(4)4 writhmetic progression then the	
			artimetic progression then the	
(1) (1,2)	(2) (1,-2)	(3) (2,-1)	(4) (2,1)	
the value of k is	x + (2k - 7)y + 3 = 0 a	nd 3kx + 9y - 5 = 0 are	(4) (2,1) perpendicular to each other then	
(1) 3	$(2)\frac{1}{3}$	$(3)\frac{2}{3}$.	$(4)\frac{3}{2}$	

26. Show that the points whose position vectors are $2\hat{i}+3\hat{j}-5\hat{k}$, $3\hat{i}+\hat{j}-2\hat{k}$ and $6\hat{i}-5\hat{j}+7\hat{k}$ are

collinear.

- 27. Examine the continuity of the function $\frac{x^2-16}{x+4}$
- 28. Find the derivative of $y = \log_{10} x$ with respect to x.
- 29. Evaluate: $\int \frac{\sin x}{1 + \cos x} dx$
- 30. If $A = \begin{bmatrix} 4 & 2 \\ -1 & x \end{bmatrix}$ and (A-2I)(A-3I) = 0, find the value of x.

SECTION - III

Note:

(i) Answer any SEVEN questions.

 $7 \times 3 = 21$

- (ii) Question number 40 is compulsory.
- 31. Check the relation $R = \{(1,1),(2,2),(3,3),...,(n,n)\}$ defined on the set $S = \{1,2,3,...,n\}$ for the three basic relations.
- 32. Prove that $\frac{\cot(180^{\circ} + \theta)\sin(90^{\circ} \theta)\cos(-\theta)}{\sin(270^{\circ} + \theta)\tan(-\theta)\csc(360^{\circ} + \theta)} = \cos^{2}\theta\cot\theta.$
- 33. In an examination a student has to answer 5 questions out of 9 questions, in which 2 are compulsory. In how many ways a student can answer the questions?
- 34. Find the coefficient of x^{15} in $\left(x^2 + \frac{1}{x^3}\right)^{10}$.
- 35. Find the equations of the straight lines, making the y-intercept of 7 and angle between the line and the y-axis is 30°.
- 36. Prove that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x-y)(y-z)(z-x)$.
- 37. If \vec{a} , \vec{b} and \vec{c} are vectors with magnitudes 3,4 and 5 respectively and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- 38. Evaluate: $\int x \log x \, dx$.
- 39. If A and B are mutually exclusive events $P(A) = \frac{3}{8}$ and $P(B) = \frac{1}{8}$, then find
 - (i) $p(\overline{A})$ (ii) $P(A \cup B)$ (iii) $P(\overline{A} \cap B)$
- 40. Evaluate: $\lim_{x \to 0} \frac{\sqrt{x+2} \sqrt{2}}{x}$

SECTION - IV

Note: Ans

Answer all the questions.

 $7 \times 5 = 35$

- 41. (a) If $f,g:\mathbb{R}\to\mathbb{R}$ are defined by f(x)=|x|+x and g(x)=|x|-x, find $g\circ f$ and $f\circ g$.
 - (b) Solve the linear inequalities and exhibit the solution set graphically:

$$x+y \ge 3, 2x-y \le 5, -x+2y \le 3.$$
42. (a) If $A+B+C=\pi$, prove that $\cos A + \cos B + \cos C = 1+4\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)$
(OR)

(b) In a $\triangle ABC$, prove that $a\cos A + b\cos B + c\cos C = 2a\sin B\sin C$.

43. (a) Prove by the principle of mathematical induction, the sum of the first n non-zero even numbers is $n^2 + n$.

(b) The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and the n^{th} hour?

44. (a) Show that
$$\begin{vmatrix} \log x & \log y & \log z \\ \log 2x & \log 2y & \log 2z \\ \log 3x & \log 3y & \log 3z \end{vmatrix} = 0$$

(OR)

(b) Show that the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} - 4\hat{k}$, $-\hat{j} + 2\hat{k}$ are coplanar.

45. (a) Describe the interval(s) on which the function $h(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous.

(b) If $\sin y = x \sin(a+y)$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$, $a \neq n\pi$.

46. (a) Using the substitution $2x+1=t^2$, show that $\int \frac{6x}{\sqrt{2x+1}} dx = 2(x-1)\sqrt{2x+1} + c$

(b) A construction company employs 2 executive engineers. Engineer-1 does the work for 60% of jobs of the company. Engineer-2 does the work for 40% of jobs of the company. It is known from the past experience that the probability of an error when engineer-1 does the work is 0.03, whereas the probability of an error in the work of engineer-2 is 0.04. Suppose a serious error occurs in the work, which engineer would you guess did the work?

47. (a) At a particular moment, a student needs to stop his speedybike to avoid a collision with the barrier ahead at a distance 40 metres away from him. Immediately he slows (retardation) the bike under braking at a rate of 8 metre/second². If the bike is moving at a speed of 24m/s, when the brakes are applied, would it stop before collision?

(b) Find the separate equations of the pair of straight lines $2x^2 - xy - 3y^2 - 6x + 19y - 20 = 0$.

R. Vijayaragavan

M.sc.,M.ed.,D.ted.,Msc(yoga), P.G.asst in maths,pattukottai