CHEMISTRY MODEL EXAMINATION, FEB-2020

KEY

Sl.No		Solution	Marks
1	(b) Lyman line		1
2	(a) Weak base		1
3	(b) Alkali metals		1
4	(c) fig		1
5	(a) O ₃		1
6	(b) The presence of H bone	d	1
7	Disproportionation reactio	n	1
8	Hyperconjugation		1
9	Ethene		1
10	(a) Statement		1
	(b) Ununquadium (flerovi	ium)	1
11	(a) Law of Definite Propor	1	
	(b) statement		
			1
12	(a) half filled atomic orbita	als are stable	1
	this is because N has half fille	ed electronic configuration (1s ² 2s ² 2p ³),	
	which is more stable and so r	nore energy is required to remove an	
	(b) This is because when ar	1	
	(b) This is because when an amaller 2nd shall. Due	1	
	more repulsion from the		
	electron goes to the large		
	low and hence Cl adds e	lectron more easily than F	
13	P=1 atm		1
	$R = 0.0821 L.atm.mol^{-1}K^{-1}$		-
	$T = 27^{\circ}C = 300K$		
	d= 256g/L		
	Molar mass $M = \frac{dRT}{dRT}$		
	P		1
	256×0.082	1×300	
	=1		
	= 6305.28g	/mol	
			-
14			2
	Extensive property	Intensive property	
	Enthalpy	Density	
15	Entropy	Specific neat capacity	1
15	(a) KCI – Neutral (KOF	1+HCI	1
	NH Cl- Acidic(NH OH+ HC	1)	
	(b) It is defined as the	product of the molar concentration of	
	hydrogen ion (hydro	nium ion) and hydroxyl ion in water or in	
	any aqueous		
	solution.	1	
	$Kw = [H^+][OH^-] = 1$	-	

23	(a) Atomic mass unit (amu): $1/12$ th the mass of a C ¹² atom is	1
	(b) Given	
	$2 \text{ KClO}_3 \qquad 2 \text{ KCl} + 3 \text{ O}_2$	2
	2×122.53 mol 2×74.55 3×32 245 1 g / mol 149 1g/mol 96g/mol	2
	The mass of oxygen produced when 50g KClO ₃ heated 50×96	
	= 245.1 = 19.58 g/mol	
24	(a) Water(H ₂ O) - Inter molecular H bonding	1
	O-nitro phenol - Intra molecular H bonding	
	(b) Both ammonia (NH_3) and nitrogen fluoride (NF_3) are pyramidal	
	in shape. Even though F is more electro negative than H, the	2
	net dipole moment of NF_3 is smaller than that of NH_3 . This is because in the case of NH_3 , the orbital dipole due to long pair	2
	is in the same direction as the resultant dipole moment of the	
	three $N - H$ bonds. But in NF ₃ , the orbital dipole is in the	
	opposite direction to the resultant dipole moment of the three	
	N-F bonds. So the dipole moments get partially	
	cancelled.	
	TN T TN X	
	H I I I I I I I I I I I I I I I I I I I	
	$MH_3(\mu = 1.7, D) = MF_3(\mu = 0.23D)$	
25	(a) $(\mathbf{P} + \mathbf{p}^2 \mathbf{q} / \mathbf{V}^2)$ $(\mathbf{V} - \mathbf{p} \mathbf{h}) = \mathbf{p} \mathbf{P} \mathbf{T}$ Where P is the prossure of the gas	1
23	(a) $(\mathbf{I} + \mathbf{I} \mathbf{a} \vee) (\mathbf{V} - \mathbf{I} \mathbf{b}) = \mathbf{I} \mathbf{K} \mathbf{I}$ where F is the pressure of the gas, V is the volume, R is the universal gas constant. T is the	1
	absolute temperature, n is the no. of moles, 'a' and 'b' are called	
	van der Wall's constants.	
	(b)	
	1. Every gas contains a large number of minute and elastic particles (atoms or molecules). The actual volume of the	
	molecules is negligible compared to the volume of the gas.	
	ii. There is no force of attraction between the gas particles.	2
	iii. The particles of a gas are in constant and random motion in	
	straight line. During this motion they collide with each other	
	and also with the walls of the container.	
	particles.	
	v. All collisions are perfectly elastic. i.e. the total energy of	
	particles before and after collisions remains the same.	
	vi. At any particular time, different particles of a gas have	
	unterent speed and hence different kinetic energy.	
	proportional to absolute temperature. (any four)	
26	(a) When ΔG become -ve the process is spontaneous	1

	i. If ΔH is negative and ΔS is +ve, ΔG is always –ve and the	
	process is always spontaneous	
	11. If both ΔH and ΔS are positive, ΔG will be –ve when $T\Delta S > \Delta H$.	
	Δ H. This is possible at high temperature.	
	111. If both ΔH and ΔS are negative, ΔG will be -ve when $1\Delta S < \Delta H$. This is possible at low temperature.	
	211. This is possible at low temperature	
	(b) $\Delta G = \Delta H - T \Delta S$.	1
	(c)	
	i. Entropy decreases	1
	ii. Entropy increases	
27		1
21	(a) i Tin(IV)ovide	1
	ii. Chromium(III)oxide	
	(b)	
	i. S is oxidized	2
	ii. Cu is reduced	
	iii. Cu_2S reducing agent	
10	1v. Cu ₂ O oxidising agent	1
28	(a) Calcium chioride or magnesium chioride or magnesium sulphate	1
	(b) Treatment with washing soda	
	Calgon's method	1
	Ion-exchange method (any one method)	
	(c) Boiler corrosion or explosion	1
29	(a) Calcium Sulphate (Plaster of Paris), CaSO4·1/2 H2O	1
	(b)	
	$2 \text{ CaSO}_4.2\text{H}_2\text{O} \rightarrow 2 \text{ CaSO}_4.\text{H}_2\text{O} + 3\text{H}_2\text{O}$	1
	(c) Above 393 K, no water of crystallisation is left and anhydrous	1
	calcium sulphate (CaSO ₄) is formed. This is known as 'dead	1
20	burnt plaster'.	1
30	(a) i X is 1-Bromonronane	1
	ii. peroxide or Kharash effect or anti-Markovnikov	1
	addition reaction	-
	(b)	1
	$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$	
	(acetylene)	
31	(a)	
	i. When the pH of the rain water drops below 5.6, it is	1
	called acid rain.	
	ii. Oxides of nitrogen and sulphur (e.g. SO ₂ and NO ₂) are	1
	mainly responsible for acid rain.	1
	(b) UO_2 , methane, water - vapour, chlorofluorocarbons (CFC's), nitrous ovide and ezone	1
32	(a) It states that <i>electron nairing takes place only after partially</i>	2
54	filling all the degenerate orbitals Orbitals having same	-
	energies are called degenerate orbitals. For example, the	
	electronic configuration of N is $1s^2 2s^2 2px^1py^1pz^1$ and not	
	$1s^2 2s^2 2px^2py^1$.	
		1

	(b) it is impossible to determine simultaneously, the exact position	
	and exact momentum (or velocity) of a moving microscopic	1
	particle like electron".	1
	i Principal Quantum Number (n)	
	ii. Azimuthal Quantum Number [Subsidiary or orbital	
	angular momentum Quantum number	
33	For Calculating the bond orders	3
	Bond order of $O_2 = 2$	
	Bond order of $O_2^{2^2} = 1$	1
24	O_2 is more stable than O_2^2	1
54	(a) It is the suppression of the dissociation of a weak electrolyte by the addition of a strong electrolyte containing a common ion	2
	For e.g. consider the dissociation of acetic acid (a weak	
	electrolyte).	
	$CH_3COOH(aq) = CH_3COO^-(aq) + H^+(aq)$	
	If we add some sodium acetate (CH ₃ COONa) to the above	
	equilibrium reaction, the concentration of acetate ion increases.	
	Then according to Le-Chatlier's principle, the equilibrium will shift towards left or the rate of forward reaction decreases i.e.	
	the dissociation rate of acetic acid decreases. This is known as	
	common ion effect.	
	(b)	
	i. Solution which resists the change in pH on dilution or	
	with the addition of small amount of acid or alkali is	
	called Buffer solution. There are two types of buffer	2
	solutions – acidic buffer and basic buffer.	
	n. solubility product constant of simply the solubility product It is defined as the product of the molar	
	concentration of ions of a sparingly soluble salt or in a	
	saturated solution.	
	e.g. Solution of barium sulphate (BaSO ₄)	
	$BaSO_{4(s)} = Ba^{2^{+}}(aq) + SO_{4}^{2^{-}}(aq)$	
	The equilibrium constant, $K = [Ba^2][SO_4^2]$	
	[DBSU4] For a pure solid, the concentration remains constant	
	Therefore, K.[BaSO ₄] = $[Ba^{2+}][SO_4^{2-}]$ Or, Ksp = $[Ba^{2+}][SO_4^{2-}]$	
35	(a) explanation of Dumas method	2
	(b)	
	i. In heterolysis or heterolytic cleavage, the bond breaks	1
	in such a manner that the shared pair of electrons	
	remains with one of the parts	
	$H_{3C} \xrightarrow{f} Br \longrightarrow H_{3C} + Br$	
	ii. Order of stability	
	\dot{C} H ₃ < \dot{C} H ₂ CH ₃ < \dot{C} H (CH ₃) ₂ < \dot{C} (CH ₃) ₃	1
	Methyl Ethyl Isopropyl Tert-butyl	
	free free free free	
	radical radical radical radical	