

26 (a) The work done by a force is equal to change in the 1 kinetic energy of the body.
(b) At point A:

Total energy $=$ K.E + P.E

$$
=0+\mathrm{mgh}=\mathrm{mgh}
$$

At point B :
$K . E=\frac{1}{2} m v^{2}=\frac{1}{2} m(2 g x)=m g x$
P.E $=m g(h-x)$

Total energy $=m g x+m g(h-x)=m g h$

$$
\begin{aligned}
& \text { At point C: } \\
& \mathrm{K} \cdot \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m}(2 \mathrm{gh})=\mathrm{mgh} \\
& \text { P.E }=\mathrm{mg}(0)=0 \\
& \text { Total energy }=\mathrm{mgh}+0=\mathrm{mgh}
\end{aligned}
$$

(c)

27 (a) Mass of the body, Position and orientation of the body,Size and shape of the body,Distribution of the mass of the body about the axis of rotation.
(b) Theorem of perpendicular axis :-The moment of inertia of a plane lamina about any axis perpendicular to its plane is equal to the sum of the moment of inertia of the lamina about any two mutually perpendicular axis in its own plane intersecting each other at the point through which the perpendicular axis passes. $I_{z}=I_{x}+I_{y}$
(c) $\quad \mathrm{I}_{\text {ring }}=\mathrm{MR}^{2} \quad \mathrm{I}_{\text {disc }}=\frac{\mathrm{MR}^{2}}{4} \quad \mathrm{I}_{\text {ring }}>\mathrm{I}_{\text {disc }}$

28 to $302 \times 5=10 \mathrm{M}$

28(a) Static friction

(b) $\frac{m v^{2}}{\mathrm{R}}=\mathrm{N} \sin \theta$
$\mathrm{mg}=\mathrm{N} \cos \theta$
$\frac{\mathrm{v}^{2}}{\mathrm{Rg}}=\tan \theta$

(c) $\mathrm{v}_{\text {max }}=\sqrt{\mu_{\mathrm{s}} \mathrm{R}_{\max } \mathrm{g}}=\sqrt{0.1 \times 3 \times 9.8}=1.715 \mathrm{~m} / \mathrm{s}$

29 (a) mode 2 and mode 3
(b) mode 2

$$
v_{2}=\frac{\mathrm{v}}{\lambda_{2}}=\frac{3 \mathrm{v}}{4 \mathrm{~L}}=3 \mathrm{v}_{1}
$$

mode 3

$$
v_{3}=\frac{\mathrm{v}}{\lambda_{2}}=\frac{5 \mathrm{v}}{4 \mathrm{~L}}=5 \mathrm{v}_{1}
$$

$v_{2}: v_{3}=3: 5$

From eqn (1) and (2) we get

$$
\begin{aligned}
P-\frac{2 T}{R} & =P-h \int g \\
h & =\frac{2 T}{\operatorname{lgR}}
\end{aligned}
$$

But from the figure, we have

$$
\begin{aligned}
\cos \theta & =\frac{\mathrm{r}}{\mathrm{R}} \\
\mathrm{R} & =\frac{\mathrm{r}}{\cos \theta} \quad \therefore \quad \mathrm{~h}=\frac{2 \mathrm{~T} \cos \theta}{\lg \mathrm{r}}
\end{aligned}
$$

(b) Surface tension of soap solution is less than normal 1 water. $h \propto T$

$$
h_{\text {soap solution }}<h_{\text {water }}
$$

Binu Baby

St. Joseph's HSS Pullurampara, Kozhikode

