FIRST YEAR HIGHER S	*	ATION – MARCH -2020				
BIOLOGY FY-26						
SCOING KEY						
	BOTANY					
	Scoring indicators AN\$WER ANY THREE		Marks 3X1=3			
(c) Mitochondrion			1			
(a) Dicot root			1			
Euglena			1			
Anaphase			1			
2C			1			
	AN\$WER ANY NINE		9X2=18			
(a) Facilitated diffusion						
(b) the movement of substance	s across cell membrane wit	h the help of special protein is				
called facilitated diffusion.			1+1 = 2			
(a) pairing of homologous chromosome / synapsis / formation of synaptonemal complex						
(b) Pachytene						
(c) Diplotene						
(d) terminalisation of chiasmat	a		$\frac{1}{2} \ge 4 = 2$			
This method help to identify th	e essential element for plar	nt				
	v 1		1 + 1 = 2			
d. Rich in hydrolytic enzymes		e. Membrane is absent	½ x 4 =2			
(a) non cyclic						
(b) one or PS I						
	sent since answer for non cyclic	rn. in question is given as "absent"	½ x 4 =2			
-	· · · · · · · · · · · · · · · · · · ·	· ·				
		17				
(b) cytoplasm			1 + 1 = 2			
	(c) Mitochondrion (a) Dicot root Euglena Anaphase 2C (a) Facilitated diffusion (b) the movement of substance called facilitated diffusion. (a) pairing of homologous chro (b) Pachytene (c) Diplotene (d) terminalisation of chiasmat The technique of growing plan This method help to identify th OU Used to identify the deficiency Lysosome d. Rich in hydrolytic enzymes (a) non cyclic (b) one or PS I (c) two or PS I and PS II (d) absent *d - give mark to either present or ab (a) splitting of sugar or glucose Glucose $\longrightarrow 2$	$\begin{array}{c} \begin{array}{c} \text{BIOLOGY FY-26}\\ \text{SCOING KEY}\\ \text{EOTANY}\\ \text{Scoring indicators}\\ \hline \text{EOTANY}\\ \text{Scoring indicators}\\ \hline \text{Answer Any THREE} \end{array}$	SCOING KEY BOTANY Scoring indicators Answer ANY THREE (c) Mitochondrion (a) Dicot root Euglena Anaphase 2C Answer ANY NINE (a) Facilitated diffusion (b) the movement of substances across cell membrane with the help of special protein is called facilitated diffusion. (a) Facilitated diffusion. (b) the movement of substances across cell membrane with the help of special protein is called facilitated diffusion. (a) pairing of homologous chromosome / synapsis / formation of synaptonemal complex (b) Pachytene (c) Diplotene (d) terminalisation of chiasmata The technique of growing plants in nutrient solution is known as hydroponics This method help to identify the essential element for plant (d) terminalisation of chiasmata The technique of growing plants of essential element (or Used to identify the deficiency symptoms of essential element (a) non cyclic (b) one or PS I (c) two or PS I and PS II (d) absent *1 given and to either present or absent since answer for non cyclic m. in question is given as "absent" (a) splitting of sugar or glucose / partial oxidation of glucose into pyruvic acid OR Glucose — 2 Pyruvic acid			

sunilks13@gmail.com 9495824297

Qn. No.		Scoring indicators		Marks	
12.	(a) A – Mesophyll cell B – Bundle sheath cell				
	(b) Oxaloacetic acid or OAA			1/ / 0	
	(c) PEP carboxylase or PEPcase			½ x 4= 2	
13.	(a) Incomplete breakdown of glucose in the absence of oxygen is called anaerobic				
	respiration. /Respiratory process in the absence of oxygen				
	(b) Pyruvic acid is converted into CO_2 and ethanol. Or				
	Pyruvic acid \rightarrow Ethanol + CO ₂				
14.	(a) Carboxylation, Reduction, Regeneration				
	(b) The first stable compound is a C_3 acid /3C compound (PGA). So it is known as C_3				
	cycle				
	* Kelvin cycle in english part of questio	n is mis leading so scheme finalizing teachers	should notice it	1 + 1 = 2	
15.	Α	В			
	(a) Double fertilization	(v) Angiosperm			
	(b) Heterospory	(iv) Pteridophyte/Gymnosperm/Ang	osperm		
	(c) Protonema	(i) Bryophyte		½ x 4= 2	
16	(d) Naked seeds	(iii) Gymnosperm			
16.	(a) Matthias Schleiden and Theor				
		mposed of cells and products of cells		1 1 0	
	2. All cells are arising from th	1 0		1 + 1 = 2	
PART I I I		N\$WER ANY THREE		3X3=9	
17.	(a) A – Twisted B – Vexillary				
	(b) Margin of the appendage/peta				
	(c) Standard petal, Wing petals &	1		1+1+1=3	
18	(a) Auxins, Gibberellins & Cytok	inins			
	(b) Abscisic acid or ABA				
	(c) 1. Involved in seed developme	3. Stimulate closure of stomata			
	4. Inhibit plant metabolism	5. Inhibit seed germination	(any two)	1+1+1=3	
19.	(a) A – Reticulate venation $B - H$	-	(unj (())		
		veinlets in the leaf lamina is called ven	ation		
	* Figure doesn't clear to identify			1+1+1=3	
20.		entiated into palisade parenchyma and	spongy		
	parenchyma		1 00		
	2. Palisade parenchyma are made	up of elongated cells			
	1 1	ged vertically and parallel to each other	er		
	4. spongy parenchyma are made				
	5. Spongy parenchyma are loosel	-			
	6. Made up of parenchyma with c		(any three)	1+1+1=3	
		-	/		

		OOLOGY	
Qn. No.	Scoring indicators		Marks
PART I	AN\$WER ANY THREE		3X1=3
1.	(c) Carbonic anhydrase		
2.	Amino acids		1
3.	(b) Sarcomere		1
4.	(b) Comb plates, Bio luminescence		1
5.	(a) Taxon		1
			1
PART I I		VER ANY NINE	9X2=18
6.	female reproductive tract	rgans lined by ciliated epithelium/ trachea/	
7.	Muscular movement – limbs/jaws/ tounge (any two) (a) Uremia (b) Renal Calculi (c) Kidney transplantation		1+1=2
	(d) Glomerulonephritis		½ x 4= 2
8.	Amphibia	Reptilia	
	(i) Skin is moist without scales(iv) Can live in aquatic as well as terrestrial habitats	(ii) Body is covered by dry and cornified skin(iii) Shed the scales as skin cast	2
9.	The enzyme molecules are fewer in nu	umber than substrate. After saturation of enzyme	
	there are no free enzyme molecule to b		2
10.	1 1 1	ntration gradient. It doesnot require energy	1 + 1 = 2
11.	 Active transport occurs against concentration gradient. It requires energy (a) IRV – Additional volume of air a person can inspire by a forcible inspiration 2500 – 3000 ml ERV – Additional volume of air a person can expire by a forcible expiration 		
	1000 – 1100 ml		
	500ml	ired or expired during a normal respiration emaining in the lungs even after a forcible	
	* Defenition or correct volume can be	selected for valuation	½ x 4= 2
12.	(a) Enzyme of gastric juice – Pepsin of Enzyme of intestinal juice – Lipase	r Renin	
	(b) Pepsin – Proteolytic enzyme or convert protein into proteoses and peptones Or		
	Renin – Proteolytic enzyme or help in digestion of milk protein in infants		
	Lipases – lipid digesting enzyme or lipolytic enzyme		
			_

Qn. No.	Scorin	g indicators	Marks
13.	A) Renin B) Angiotensin I		
	C) Aldosterone D) Increases		½ x 4= 2
14.	Adrenal cortex	Adrenal medulla	
	The hormones of adrenal cortex are called	The hormones of adrenal medulla are called	
	corticoids	emergency hormones	
	It secrete glucocorticoid, mineralocorticoid and androgenic steroids	It secrete adrenaline or epinephrine and noradrenaline or norepinephrine	
	The hormones involved in carbohydrate	Hormones increase alertness, heart beat,	
	metabolism, electrolyte balance and growth		
	of facial, pubic and axial hair		1.1 0
15.	(a) Excretory product is uric acid	(Any Two)	1 + 1 = 2
15.	(b) Malpighian tubule, nephrocytes, fat b	body and urecose gland (Any Two)	1+1 = 2
16.	Cartilage cells are called chondrocytes	(Ally 1 wo)	
10.	Intercalated discs are seen in cardiac mu	scle	1 + 1 = 2
PARTIII		R ANY THREE	3X3 = 9
	-	ANY INKEE	3A3 - Y
17.	(a) ECG		
	(b) P wave $-$ excitation of atria/depo		
	QRS wave – depolarization of ventu		
	T wave $-$ repolarization of ventr		½ x 6 =3
10	(c) Any deviation in ECG indicate the ab	phormality or disease of heart	
18	(A) Testis		
	(B) Thymosin (C) Differentiation of T lymphosytes/ha	n in call madiated immunity/Haln in humanal	
	immunity	p in cell-mediated immunity/Help in humoral	
	(D) Pancreas		
	(E) Melatonin		
		m/ influence metabolism, pigmentation etc	$\frac{1}{2} \ge 6 = 3$
19.		(b)	
19.		hordata	
	B – NereisAnneli		
		elminthes	1+1+1=3
20.	(a) A – Lens B^* – Optic nerve		
	(b) It is the thinned-out portion of the ret	ina	
	Only cone cells are present/densely p	acked	
	Visual activity is maximum	(any one point)	
	(c) Cornea \rightarrow Aqueous chamber \rightarrow lens	→Vitreous chamber →retina	
	* Label starting point not clear in figure		
			1+1+1=3
TINI	OFFICIAL ANSWER KEY		
UN	OFFICIAL ANSWER REI		
Dr. Sl	UNIL KUMAR. S, NVT BIOLOGY		
	12%	P	

sunilks13@gmail.com 9495824297

Page 4