PUBLIC EXAMINATION MARCH – 2020

CLASS :12

TENTATIVE ANSWER KEY

SUBJECT: CHEMISTRY

PART – I

Choose the correct answer

ТҮРЕ А					
1	1 b (1)-(ii), (2)-(i), (3)-(ii), (4)-(ii				
2	a	Electromagnetic separation			
3	d	Sc			
4	c	Therapeutic index			
5	с	basic, acidic, basic			
6	b	TACGAACT			
7	с	2,4-dimethyl aniline			
8	b	5F			
9	c	Both Assertion and Reason are true and Reason is not the correct explanation of Assertion			
10	d	Lithium-ion battery			
11	b	H ₂ N ₂ O ₂			
12	c	S _N 2 reaction			
13	d	32%			
14	a	half life period			
15	c	o-phenol sulphonic acid			

15 X 1 = 15						
	ТҮРЕ В					
1	b	$H_2N_2O_2$				
2	c	o-phenol sulphonic acid				
3	b	5F				
4	d	32%				
5	c	Both Assertion and Reason are true and Reason is not the correct explanation of Assertion				
6	b	(1)-(ii), (2)-(i), (3)-(ii), (4)-(iii)				
7	a	Electromagnetic separation				
8	c	2,4-dimethyl aniline				
9	c	S _N 2 reaction				
10	c	Therapeutic index				
11	d	Lithium-ion battery				
12	d	Sc				
13	a	half life period				
14	c	basic, acidic, basic				
15	b	TACGAACT				

PART II

Answe	r any SIX questions. Question No. 24 is compulsory	6 X	2 = 12
Q.NO	ANSWERS		MARKS
16	$Ca(OH)_2 + Cl_2 \longrightarrow CaOCl_2 + H_2O$		2
17	d-block – i) Tungsten ii) Ruthenium f-block – iii) Promethium iv) Einsteinium	4x ¹ / ₂	2
18	$[Cr(H_2O)_6]Cl_3 [Cr(H_2O)_5Cl]Cl_2.H_2O [Cr(H_2O)_4Cl_2]Cl.2H_2O (any two)$	2 x 1	2
19	The number of octahedral voids -6 The number of tetrahedral voids -12	2 x 1	2
20	 Lewis acid: positive ion (or) an electron deficient molecule (e.g) BF₃ Lewis base: anion (or) neutral molecule with at least one lone pair of electrons. (e.g) H₂O 	2 x 1	2
21	Dispersion medium : Solid Dispersed phase : Liquid	2 x 1	2
22	Catalyst : Pd Catalytic Poision : BaSO ₄ (aldehyde cannot be further reduced to alcohol) $CH_3COCl + H_2 \xrightarrow{Pd/BaSO_4} CH_3CHO+ HCl$	2 x 1	2
23	$CH_3NO_2 + 3 Cl_2 \xrightarrow{NaOH} CCl_3NO_2 + 3HCl$		2
24	The C-O-C bond angle is slightly greater than the tetrahedral bond angle due to the repulsive interaction between the two bulkier alkyl groups.		2

P.SIVAKUMAR M,Sc.,M.Ed.,

PART III

Answer any SIX questions. Question No. 33 is compulsory

6 X 3 = 18

Q.NO	ANSWERS		MARKS
25	$K_2Cr_2O_7 + 4NaCl + 6 H_2SO_4 \longrightarrow 2 KHSO_4 + 4 NaHSO_4 + 2 CrO_2Cl_2 + 3 H_2O$		3
26	$Sc^{3+} - d^0$, No unpaired electron d-d transition is not possible, $[Sc(H_2O)_6]^3$ is colourless	3 x 1	3
27	$[H_{3}O]^{+} = Ka \frac{[acid]_{eq}}{[base]_{eq}}$ $[H_{3}O]^{+} = Ka \frac{[acid]}{[salt]}$ $-\log [H_{3}O]^{+} = -\log K_{a} - \log \frac{[acid]}{[salt]}$	1	
	$pH = pK_{a} - \log \frac{[acid]}{[salt]}$ $pH = pKa + \log \frac{[salt]}{[acid]}$ $pOH = pK_{b} + \log \frac{[salt]}{[base]}$	1	3
28	 Unlike galvanising the entire surface of the metal to be protected need not be covered with a protecting metal instead, metals such as .Mg .or zinc which is corroded more easily than iron can be used as a sacrificial anode and the iron material acts as a cathode. So iron is protected, but Mg or Zn is corroded 		3
29	 i) As₂S₃ - Spherical ii) Blue gold sol - Disc or plate like iii) Tungstqic acid sol - Rod like 	3 X 1	3

30	• Formic acid contains both an aldehyde as well as an acid group $H = C = OH \qquad H = C = OH$	3 X 1	3
	 Formic acid reduces Tollen's reagent (ammonical silver nitrate solution) to metallic silver Formic acid reduces Fehling's solution. It reduces blue coloured cupric ions to red coloured cuprous ions. 		
31	 Fibrous proteins Linear molecules similar to fibres Insoluble in water 	1½	3
	 Held together by disulphide bridges and weak intermolecular hydrogen bonds. Example: Keratin, Collagen etc Globular proteins Spherical shape. 	11⁄2	
	 The polypeptide chain is folded into a spherical. These proteins are usually soluble in water and have many functions including catalysis. 		
32	 Reduce the product spoilage and extend the shelf-life of food Addition of vitamins and minerals reduces the mall nutrient Flavouring agents enhance the aroma of the food Antioxidants prevent the formation of potentially toxic oxidation products of lipids and other food constituents 	Any Three	3
33	 The presence of inner d and f-electrons which has poor shielding effect compared to s and p-electrons. Effective nuclear charge on the valance electrons increases 	1½ 1½	3

PART - IV

Answer All the Questions

5 X 5 = 25

Q.NO	ANSWERS		MARKS
34 a)	Fractional crystallization - impure metal – solidify- impurities-molten region. Impurities- more soluble- impure metal –rod-heated-mobile induction - pure metal crystallizes-impurities- molten zone-repeated - purity level-inert gas atmosphere- prevent the oxidation of metals-Ge,Si and Ga- semiconductor.		5
b)	i) 1. Valency of element is greater than or equal to two 2. Element should have an ability to bond with itself 3. The self bond must be as strong as its bond with other elements 4. Kinetic inertness of catenated compound towards other molecules ii) $SiO_2 + 4HF \longrightarrow SiF_4 + 2H_2O$ $Na_2SiO_3 + 6HF \longrightarrow Na_2SiF_6 + 3H_2O$	Any two point 2 x 1	5
35 a)	i) Name Molecular formula Structure Sulphurous acid H_2SO_3 HO OHO HO HO HO HO HO HO HO	1½ 1½ 2	5
b)	i) Magnetic property - No. of unparied electrons = 4, Paramagnetic Magnetic moment - $\mu s = \sqrt{n(n+2)}$ $= \sqrt{4(4+2)}$ = 4.899 BM	1 1	

P.SIVAKUMAR M,Sc.,M.Ed.,

CELL: 9790610610

$\kappa = \frac{1}{R}$ $\kappa = \frac{1}{1!}$ $= 2.1$	$\frac{\left(\frac{l}{A}\right)}{\frac{1}{5\Omega} \times \frac{1.5 \times 10^{-2} \text{m}}{4.5 \times 10^{-4} \text{m}^2}}$ 22 Sm ⁻¹	$l = 1.5 \text{ cm} = 1.5 \times 10^{-2} \text{m}$ A = 4.5 cm ² = 4.5×(10 ⁻⁴)m ² R = 15Ω	3	
(7 a) Chen	nical adsorption	Physical adsorption		
 It is very It is very It is very nature of ad chemical increase pret the amount. When ter chemisorpti then decrease Chemisor transfer of e adsorbent ar Heat of a from 40-400 Monolay formed. Adsorption called active on surface ar Chemisor formation o with apprece 	slow . specific depends on lsorbent and adsorbate. adsorption is fast with essure, it can not alter nperature is raised on first increases and ses. rption involves electrons between the nd adsorbate. dsorption is high i.e., 0kJ/mole. er of the adsorbate is on occurs at fixed sites e centres. It depends urea rption involves the f activated complex iable activation	It is instantaneous It is non-specific In Physisorption, when pressure increases the amount of adsorption increases. Physisorption decreases with increase in temperature No transfer of electrons Heat of adsorption is low in the order of 40kJ/mole. Multilayer of the adsorbate is formed on the adsorbent. It occurs on all sides. Activation energy is insignificant.	Any three $3 \times 1 = 3$	5

P.SIVAKUMAR M,Sc.,M.Ed.,

CELL: 9790610610

PART	MARKS	TOTAL QUESTIONS	BOOK BACK	INTERIOR	TOTAL MARKS
I	1 MARK	15	8	7	15
П	2 MARK	9	1	8	18
III	3 MARK	9	1	8	18
IV	5 MARK	10	4	6	50

