ANSWER AND SOLUTIONS

SECTION-A

1. Option (3)
$\frac{1}{2}$
2. Option (3)
36°
3. Option (2)
-1
4. Option (1)
$(3,1)$
5. Option (2)
$\mathrm{k} \leq 4$
6. Option (3)

28
7. Option (4)
$4 \sqrt{2} \mathrm{~cm}$
8. Option (2)

1
9. Option (1)
60°
10. Option (4)

9 units
11. 3 cm
12. 7.8
13. 162

OR
$\frac{3}{4}$
14. $-\frac{9}{4}$
15. 0
16. Since, given rational number $=\frac{441}{2^{2} \cdot 5^{7} \cdot 7^{2}}$
$=\frac{7^{2} \times 3^{2}}{2^{2} \cdot 5^{7} \cdot 7^{2}}=\frac{3^{2}}{2^{2} \cdot 5^{7}}$
\Rightarrow Rational number has a terminating decimal expansion.
$\left[\because\right.$ Denominator is of form $\left.2^{n} 5^{m}\right]$

OR

Since denominator $=2^{4} \times 5^{3}$
highest power of 2 and $5=4$
So, it will terminate after 4 decimal places
17. $\frac{\sec \left(90^{\circ}-\theta\right) \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}{3 \tan 27^{\circ} \cdot \tan 63^{\circ}}$
$=\frac{\operatorname{cosec} \theta \cdot \operatorname{cosec} \theta-\cot \theta \cdot \cot \theta+\cos ^{2}\left(90^{\circ}-65^{\circ}\right)+\cos ^{2} 65^{\circ}}{3 \tan \left(90^{\circ}-63^{\circ}\right) \tan 63^{\circ}}$
$=\frac{\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)+\left(\sin ^{2} 65^{\circ}+\cos ^{2} 65^{\circ}\right)}{3 \cot 63^{\circ} \cdot \tan 63^{\circ}}$
$=\frac{1+1}{3 \times \frac{1}{\tan 63^{\circ}} \times \tan 63^{\circ}}=\frac{2}{3}$
$\left[\because \quad \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1, \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
18. $a=11, d=-3, a_{n}=-150$
$a_{n}=a+(n-1) d$
$-150=11+(n-1)(-3)$
$-150=11-3 n+3$
$3 n=164$
$\Rightarrow \mathrm{n}=\frac{164}{3}=54.66$
Hence -150 is not a term of the given AP.
19. Given, $\mathrm{px}^{2}-2 \sqrt{5} \mathrm{px}+15=0$

Since roots are equal
Discriminant $\mathrm{D}=0$
i.e., $(-2 \sqrt{5} p)^{2}-4 \times p \times 15=0 \Rightarrow 20 p^{2}-60 p=0$
$\Rightarrow \mathrm{p}^{2}-3 \mathrm{p}=0 \Rightarrow \mathrm{p}(\mathrm{p}-3)=0$
$\Rightarrow \mathrm{p}=0$ or $\mathrm{p}=3 \Rightarrow \mathrm{p}=3(\because \mathrm{p}$ cannot be zero $)$
20. Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}} \quad(\because$ ratio area of two
similar triangles is equal to square of ratio of their corresponding sides)
$=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$

SECTION-B

21. Number divisible by 8 between 200 and 500 are 208, 216, 224, .496 which forms an A.P.
\therefore First term (a) $=208$, common difference $(d)=8$
$\mathrm{n}^{\text {th }}$ term of an A.P. is $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1)$ d
$496=208+(n-1) 8$
$\Rightarrow \quad 288=(\mathrm{n}-1) 8$
$\Rightarrow \mathrm{n}-1=36$
$\Rightarrow \mathrm{n}=37$

OR

Here, $\mathrm{a}=3, \ell=24$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\frac{\mathrm{n}}{2}(\mathrm{a}+\ell) \\
& =\frac{8}{2}(3+24) \\
& =4 \times 27 \\
& =108
\end{aligned}
$$

22. Total possible outcomes $=6 \times 6=36$

Favourable outcomes are $\{(1,6),(2,3),(3,2)$, $(6,1)\}$ i.e. 4 in number.
$\therefore \mathrm{P}($ getting the product 6$)=\frac{4}{36}=\frac{1}{9}$
23.

$\mathrm{OA}=6 \mathrm{~cm}, \mathrm{OB}=4 \mathrm{~cm}, \mathrm{AP}=8 \mathrm{~cm}$
In $\triangle \mathrm{APO}$, by pythagores theorem
$\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{AP}^{2}=36+64=100$
$\Rightarrow \mathrm{OP}=10 \mathrm{~cm}$
In $\triangle \mathrm{BPO}$, by pythagores theorem

$$
\mathrm{BP}^{2}=\mathrm{OP}^{2}-\mathrm{OB}^{2}=100-16=84
$$

$\Rightarrow \quad \mathrm{BP}=2 \sqrt{21} \mathrm{~cm}$
24. If height is 40 cm
circumference of base of cylinder $=22 \mathrm{~cm}$
$2 \times \frac{22}{7} \times r=22$
$\mathrm{r}=\frac{7}{2} \mathrm{~cm}$
25. Any number which ends in zero must have at least 2 and 5 as prime factors.
$6=2 \times 3$
$6^{\mathrm{n}}=(2 \times 3)^{\mathrm{n}}$
$=2^{\mathrm{n}} \times 3^{\mathrm{n}}$
Hence, prime factor of 6 are 2 and 3
Thus, 6^{n} can never end with digit 0 .
OR
$90=2 \times 3^{2} \times 5$
$144=2^{4} \times 3^{2}$
$\mathrm{HCF}=2 \times 3^{2}=18$
$\mathrm{LCM}=2^{4} \times 3^{2} \times 5=720$
26. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from $\mathrm{A}(-5,3)$ and B(7, 2)
$\mathrm{AP}=\mathrm{BP}$
$\Rightarrow \sqrt{\left((x+5)^{2}+(y-3)^{2}\right)}=\sqrt{\left((x-7)^{2}+(y-2)^{2}\right)}$
$\Rightarrow \mathrm{x}^{2}+10 \mathrm{x}+25+\mathrm{y}^{2}-6 \mathrm{y}+9$
$=x^{2}-14 x+49+y^{2}-4 y+4$
$10 x-6 y+34=-14 x-4 y+53$
$10 \mathrm{x}+14 \mathrm{x}-6 \mathrm{y}+4 \mathrm{y}=53-34$
$24 \mathrm{x}-2 \mathrm{y}=19$
$24 \mathrm{x}-2 \mathrm{y}-19=0$
is the required relation 1

SECTION-C

27. Given $\sqrt{2}$ and $-\sqrt{2}$ are two zeroes of
$2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$ then $\left(x^{2}-2\right)$ is a factor of $2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$
$\therefore \mathrm{x}$

$\therefore 2 \mathrm{x}^{4}+7 \mathrm{x}^{3}-19 \mathrm{x}^{2}-14 \mathrm{x}+30$
$=\left(x^{2}-2\right)\left(2 x^{2}+7 x-15\right)$
$=\left(x^{2}-2\right)\left(2 x^{2}+10 x-3 x-15\right)$
$=(x-\sqrt{2})(x+\sqrt{2})(2 x-3)(x+5)$
Therefore, the zeroes of the given polynomial are
$\sqrt{2},-\sqrt{2}, \frac{3}{2},-5$
28. Radius of the cylinder $(\mathrm{r})=3.5 \mathrm{~cm}$

Height of the cylinder (h) $=10 \mathrm{~cm}$
Curved surface area of cylinder $=2 \pi \mathrm{rh}$
$=2 \times \frac{22}{7} \times \frac{35}{10} \times 10 \mathrm{~cm}^{2}$
$=220 \mathrm{~cm}^{2}$

Curved surface area of a hemisphere $=2 \pi \mathrm{r}^{2}$
Curved surface area of both hemispheres
$=2 \times 2 \pi r^{2}=4 \pi r^{2}=4 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \mathrm{~cm}^{2}$
$=154 \mathrm{~cm}^{2}$
Total surface area of the remaining solid
$=($ Curved surface area of cylinder + curved surface area of 2 hemispheres)
$=(220+154) \mathrm{cm}^{2}=374 \mathrm{~cm}^{2}$.

OR

Given : $\mathrm{d}=24 \mathrm{~m}, \mathrm{~h}=3.5 \mathrm{~m}$
$\mathrm{r}=12 \mathrm{~m}$

Volume of rice $=\frac{1}{3} \pi 12^{2} \times 3.5=528 \mathrm{~m}^{3}$
Canvas cloth required to cover heap
$=\pi \mathrm{r} \ell$
$\ell=\sqrt{12^{2}+3.5^{2}}=12.50$
From (1)
Cloth required $=\frac{22}{7} \times 12 \times 12.5=471.43 \mathrm{~m}^{2}$
29.

Salary (₹ in thousand)	Number of Persons	c.f.
$5-10$	49	49
$10-15$	133	182
$15-20$	63	245
$20-25$	15	260
$25-30$	6	266
$30-35$	7	273
$35-40$	4	277
$40-45$	2	279
$45-50$	1	280

$\mathrm{n}=280, \frac{\mathrm{n}}{2}=140$

So, median class is $10-15$
$\ell=10, \mathrm{cf}=49, \mathrm{f}=133, \mathrm{~h}=5$

Median $=\ell+\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$

$$
\begin{aligned}
& =10+\frac{140-49}{133} \times 5 \\
& =10+3.42 \\
& =13.42
\end{aligned}
$$

30. Let the radii of the largest semicrcle, the smallest semicircle and the circle with diameter BD be $\mathrm{r}_{1}, \mathrm{r}_{2}$ and r_{3} respectively.

Given, $\mathrm{AE}=14 \mathrm{~cm} \Rightarrow \mathrm{r}_{1}=7 \mathrm{~cm}$
and $\mathrm{DE}=\mathrm{AB}=3.5 \mathrm{~cm} \quad \therefore \mathrm{r}_{2}=\frac{3.5}{2} \mathrm{~cm}$
$r_{3}=r_{1}-2 r_{2}=7-2 \times \frac{3.5}{2}=7-3.5=3.5 \mathrm{~cm}$
Area of the shaded region $=$ Area of semicircle with radius $r_{1}+$ Area of semicircle with radius $r_{3}-2 \times$ Area of semicircle with radius r_{2}
$=\frac{1}{2} \pi\left(\mathrm{r}_{1}\right)^{2}+\frac{1}{2} \pi\left(\mathrm{r}_{3}\right)^{2}-2 \times \frac{1}{2} \pi\left(\mathrm{r}_{2}\right)^{2}$
$=\frac{1}{2} \pi\left\{\left(\mathrm{r}_{1}\right)^{2}+\left(\mathrm{r}_{3}\right)^{2}-2\left(\mathrm{r}_{2}\right)^{2}\right\}$
$=\frac{1}{2} \times \frac{22}{7}\left\{(7)^{2}+(3.5)^{2}-2\left(\frac{3.5}{2}\right)^{2}\right\}$
$=\frac{11}{7}\left\{49+12.25-\frac{12.25}{2}\right\}=\frac{11}{7}(49+6.125)$
$=\frac{11}{7} \times 55.125=86.625 \mathrm{~cm}^{2}$

OR

Given, $\mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{BC}=10 \mathrm{~cm}$
By pythagoras theorem, in $\triangle \mathrm{ABC}$, we get
$\mathrm{AC}^{2}=\mathrm{BC}^{2}-\mathrm{AB}^{2}=(10)^{2}-(6)^{2}=64$
$\Rightarrow \mathrm{AC}=8 \mathrm{~cm}$
Let the radius of the incircle be r.
Let the circle touch side $A B$ at P, side $A C$ at Q and side BC at R

Join OP, OQ and OR.
We know that the radius from the centre of the circle is perpendicular to the tangent through the point of contact.
$\therefore \mathrm{OP} \perp \mathrm{AB}, \mathrm{OQ} \perp \mathrm{AC}$ and $\mathrm{OR} \perp \mathrm{BC}$
Also, the tangents drawn from an external point to the circle are equal.
$\therefore \mathrm{AP}=\mathrm{AQ}, \mathrm{BP}=\mathrm{BR}, \mathrm{CR}=\mathrm{CQ}$
Now, in quadrilateral
$\mathrm{AQ}=\mathrm{AP}$ and $\angle \mathrm{AQO}=\angle \mathrm{APO}=\angle \mathrm{PAQ}=90^{\circ}$
OPAQ is a square.
$\therefore \mathrm{OP}=\mathrm{AQ}=\mathrm{AP}=\mathrm{OQ}=\mathrm{r}$
$\therefore \mathrm{PB}=6-\mathrm{r} \Rightarrow \mathrm{BR}=6-\mathrm{r}$
$\mathrm{CQ}=8-\mathrm{r} \Rightarrow \mathrm{CR}=8-\mathrm{r}$
Now, $\mathrm{BC}=\mathrm{BR}+\mathrm{CR}$
$\Rightarrow 10=6-\mathrm{r}+8-\mathrm{r} \Rightarrow 10=14-2 \mathrm{r}$
$\Rightarrow \mathrm{r}=2 \mathrm{~cm}$
Now, area of shaded region
$=$ Area of $\triangle \mathrm{ABC}-$ Area of circle
$=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}-\pi \mathrm{r}^{2}=\frac{1}{2} \times(8) \times(6)-3.14(2)^{2}$
$=24-12.56=11.44 \mathrm{~cm}^{2}$
31. Two solutions of each linear equation
$x+3 y=6$
and $2 \mathrm{x}-3 \mathrm{y}=12$
are given below.
(i)

\mathbf{x}	6	0
\mathbf{y}	0	2

(ii)

\mathbf{x}	6	0
\mathbf{y}	0	-4

The graphical representation of the given pair of linear equations is as follows :

Thus, the coordinates of point where the line $x+3 y=6$ intersects the y-axis at $(0,2)$ and the line $2 x-3 y=12$ intersects the y-axis at $(0,-4)$.

OR

Let the fraction be $\frac{x}{y}$.
According to question
$\therefore \mathrm{x}+\mathrm{y}=2 \mathrm{x}+4 \Rightarrow \mathrm{x}=\mathrm{y}-4$
Also, $\frac{x+3}{y+3}=\frac{2}{3}$
$\Rightarrow \frac{y-4+3}{y+3}=\frac{2}{3}$
$\Rightarrow \frac{y-1}{y+3}=\frac{2}{3}$
$\Rightarrow 3 y-3=2 y+6 \Rightarrow y=9$
Substituting the value of y in (i), we get
$x=5$
Thus, the required fraction is $\frac{5}{9}$.
32. L.H.S. $=(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)$
$=\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right)$
$=\left(\frac{(\sin A+\cos A-1)(\sin A+\cos A+1)}{\sin A \cos A}\right)$
$=\frac{(\sin \mathrm{A}+\cos \mathrm{A})^{2}-1^{2}}{\sin \mathrm{~A} \cos \mathrm{~A}}$
$=\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}+2 \sin \mathrm{~A} \cos \mathrm{~A}-1}{\sin \mathrm{~A} \cos \mathrm{~A}}$
$=\frac{1+2 \sin \mathrm{~A} \cos \mathrm{~A}-1}{\sin \mathrm{~A} \cos \mathrm{~A}} \quad\left[\because \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1\right]$
$=2=$ R.H.S.
Hence proved
33. $\mathrm{LHS}=\frac{\sin \mathrm{A}-2 \sin ^{3} \mathrm{~A}}{2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}}$

$$
\begin{aligned}
& =\frac{\sin \mathrm{A}\left(1-2 \sin ^{2} \mathrm{~A}\right)}{\cos \mathrm{A}\left(2 \cos ^{2} \mathrm{~A}-1\right)} \\
& =\frac{\tan \mathrm{A}\left[1-2\left(1-\cos ^{2} \mathrm{~A}\right)\right]}{\cos \mathrm{A}\left(2 \cos ^{2} \mathrm{~A}-1\right)}
\end{aligned}
$$

$\left[\because \tan \mathrm{A}=\frac{\sin \mathrm{A}}{\cos \mathrm{A}}, \sin ^{2} \mathrm{~A}=1-\cos ^{2} \mathrm{~A}\right]$
$=\frac{\tan \mathrm{A}\left[1-2+2 \cos ^{2} \mathrm{~A}\right]}{\left(2 \cos ^{2} \mathrm{~A}-1\right)}$
$=\frac{\tan \mathrm{A}\left[2 \cos ^{2} \mathrm{~A}-1\right]}{\left(2 \cos ^{2} \mathrm{~A}-1\right)}$
$=\tan \mathrm{A}=$ RHS .
34. $\mathrm{BQ}=12 \mathrm{~cm}$,
$\mathrm{OB}=13 \mathrm{~cm}$
$\therefore \mathrm{OQ}=\sqrt{13^{2}-12^{2}}$

$$
=\sqrt{169-144}=\sqrt{25}
$$

$$
\mathrm{OQ}=5 \mathrm{~cm}
$$

Let $P Q=y$ and $P A=x$
In \triangle POA : $x^{2}+13^{2}=(y+5)^{2}$
$x^{2}+169=y^{2}+10 y+25$

$$
\begin{equation*}
: x^{2}-y^{2}+169-25=10 y \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{PQA}: \mathrm{x}^{2}=12^{2}+\mathrm{y}^{2}$

$$
\begin{equation*}
x^{2}-y^{2}=144 \tag{2}
\end{equation*}
$$

Put (2) in (1) $144+169-25=10 y$

$$
10 y=288 \Rightarrow y=28.8
$$

$\mathrm{PA}=\mathrm{x}=\sqrt{144+(28.8)^{2}}=\sqrt{973.44}$
$=31.2 \mathrm{~cm}$

SECTION-I)

35. Less than type cumulative frequency table:

Class	Upper class limit	Frequency	Cumulative frequency
$20-30$	30	8	8
$30-40$	40	12	$8+12=20$
$40-50$	50	24	$20+24=44$
$50-60$	60	6	$44+6=50$
$60-70$	70	10	$50+10=60$
$70-80$	80	15	$60+15=75$
$80-90$	90	25	$75+25=100$

More than type cumulative frequency table :

Class	Lower class limit	Frequency	Cumulative frequency
$20-30$	20	8	100
$30-40$	30	12	$100-8=92$
$40-50$	40	24	$92-12=80$
$50-60$	50	6	$80-24=56$
$60-70$	60	10	$56-6=50$
$70-80$	70	15	$50-10=40$
$80-90$	80	25	$40-15=25$

The less than type and more than type ogives can be drawn on graph paper as follows :

Since, graph intersect at $(60,50)$
\therefore Median is 60 .
36. In order to draw the pair of tangents, we follow the following steps.
Steps of construction
Step 1: Take a point O on the plane of the paper and draw a circle of radius $\mathrm{OA}=5 \mathrm{~cm}$.
Step 2 : Produce OA to B such that $\mathrm{OA}=\mathrm{AB}=$ 5 cm .
Step 3 : Taking A as the centre draw a circle of radius $\mathrm{AO}=\mathrm{AB}=5 \mathrm{~cm}$.
Suppose it cuts the circle drawn in step I at P and Q .

Step 4 : Join BP and BQ to get the desired tangents.

Steps of construction

(1) Draw a line segment $\mathrm{BC}=6 \mathrm{~cm}$.
(2) Draw a perpendicular bisector of BC which cuts the line $B C$ at Q.
(3) Cut the line $\mathrm{OA}=4 \mathrm{~cm}$.
(4) Join A to B and C.
(5) Triangle ABC is the given triangle.

(6) Draw a ray BX making an acute angle.
(7) Mark the four points B_{1}, B_{2}, B_{3} and B_{4} on the ray BX .
(8) Join $B_{4} C$. Draw a line parallel through B_{3} to $\mathrm{B}_{4} \mathrm{C}$ intersecting extended line segment AB at A^{\prime}.

Hence $\Delta A^{\prime} B^{\prime} C^{\prime}$ is a required triangle.
37. Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which a line DE parallel to $B C$ intersects $A B$ at D and $A C$ at E.

To prove : DE divides the two sides in the same ratio.
i.e., $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

Construction : Join BE, CD and draw $\mathrm{EF} \perp \mathrm{AB}$ and $\mathrm{DG} \perp \mathrm{AC}$.

Proof : $\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}$
Similarly, $\operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \times \mathrm{DB} \times \mathrm{EF}$
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EF}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
and $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{DEC})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{GD}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{GD}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Since, $\triangle \mathrm{BDE}$ and $\triangle \mathrm{DEC}$ lie between the same parallel lines DE and BC and on the same base DE.

So, $\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{DEC})$
From (i), (ii) and (iii) we get
$\frac{A D}{D B}=\frac{A E}{E C} \quad$ Hence, proved.

Now, in $\triangle \mathrm{PQR}$, we have $\mathrm{AB} \| \mathrm{PQ}$
$\Rightarrow \frac{\mathrm{AR}}{\mathrm{PR}}=\frac{\mathrm{BR}}{\mathrm{QR}}$
In $\triangle \mathrm{AQR}$, we have $\mathrm{CB} \| \mathrm{AQ}$
$\Rightarrow \frac{\mathrm{CR}}{\mathrm{AR}}=\frac{\mathrm{BR}}{\mathrm{QR}}$

From (i) and (ii) we get $\frac{\mathrm{AR}}{\mathrm{PR}}=\frac{\mathrm{CR}}{\mathrm{AR}}$
$\Rightarrow \mathrm{AR}^{2}=\mathrm{PR} . \mathrm{CR}$
38. Let the usual speed of the train be $x k m / h$
$\frac{300}{x}-\frac{300}{x+5}=2$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-750=0$
$\Rightarrow(\mathrm{x}+30)(\mathrm{x}-25)=0$
$\Rightarrow \mathrm{x}=-30,25$
\therefore Usual speed of the train $=25 \mathrm{~km} / \mathrm{h}$
OR
$\frac{1}{(a+b+x)}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}$
$\Rightarrow \frac{x-a-b-x}{x(a+b+x)}=\frac{b+a}{a b}$
$\Rightarrow-\mathrm{ab}=\mathrm{x}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{ax}+\mathrm{bx}+\mathrm{ab}=0$
$\Rightarrow(\mathrm{x}+\mathrm{a})(\mathrm{x}+\mathrm{b})=0$
$\Rightarrow \mathrm{x}=-\mathrm{a},-\mathrm{b}$
39.

In $\triangle \mathrm{ABE}$,
$\frac{\mathrm{h}}{\mathrm{x}}=\tan 30^{\circ}$
$\Rightarrow \mathrm{x}=\mathrm{h} \sqrt{3}$
In $\triangle \mathrm{BDE}$,
$\frac{h+60+60}{x}=\tan 60^{\circ}$
$h+120=x \sqrt{3}$
$h+120=h \sqrt{3} \times \sqrt{3}$
$2 \mathrm{~h}=120$
$h=60$
\therefore height of cloud from surface of water
$=(60+60) \mathrm{m}=120 \mathrm{~m}$
40. Since diagonals of $\|^{\mathrm{gm}}$ bisect each other

Coordinates of point $\mathrm{O}=\left(\frac{-4+2}{2}, \frac{-3+3}{2}\right)$

$$
\begin{align*}
& =\left(\frac{-2}{2}, \frac{0}{2}\right) \\
& =(-1,0) \tag{1}
\end{align*}
$$

Again coordinates of point O

$$
\begin{align*}
& =\left(\frac{1+\mathrm{a}}{2}, \frac{-2+2}{2}\right) \\
& =\left(\frac{1+\mathrm{a}}{2}, 0\right) \tag{2}
\end{align*}
$$

From (1) and (2) we have

$$
\begin{aligned}
& \frac{1+\mathrm{a}}{2}=-1 \\
\Rightarrow & 1+\mathrm{a}=-2 \\
\Rightarrow & \mathrm{a}=-2-1=-3
\end{aligned}
$$

So, the points of $\|^{g m} \mathrm{ABCD}$ are
$\mathrm{A}(1,-2), \mathrm{B}(2,3), \mathrm{C}(-3,2)$ and $\mathrm{D}(-4,-3)$
Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}|[1(3-2)+2(2+2)-3(-2-3)]|$
$=\frac{1}{2}|1+8+15|=12$ sq units
Area of $\|^{\mathrm{gm}} \mathrm{ABCD}=2 \times 12=24$ sq units
$\mathrm{AB}=\sqrt{(2-1)^{2}+(3+2)^{2}}$

$$
=\sqrt{1^{2}+5^{2}}=\sqrt{26}
$$

Again area of $\|^{\mathrm{gm}} \mathrm{ABCD}=\mathrm{AB} \times$ height

$$
24=\sqrt{26} \times \text { height }
$$

$$
\text { height }=\frac{24}{\sqrt{26}}
$$

$$
\text { height }=\frac{24 \sqrt{26}}{26}
$$

Hence, $\mathrm{a}=-3$, height $=\frac{12 \sqrt{26}}{13}$.

OR

Area of $\triangle \mathrm{ABC}$,
$=\frac{1}{2}|-5(-5+6)-4(-6-7)-1(7+5)|$
$=\frac{1}{2}|-5+52-12|$
$=\frac{1}{2} \times 35=\frac{35}{2}$ sq. units
Area of $\triangle \mathrm{ACD}$,
$=\frac{1}{2}|-5(-6-5)-1(5-7)+4(7+6)|$
$=\frac{1}{2}|55+2+52|$
$=\frac{109}{2}$ sq. units

Area of quadrilateral $\mathrm{ABCD}=\frac{35}{2}+\frac{109}{2}$
$=\frac{144}{2}=72$ sq. units

