SET-2

General Instructions:

- (i) All the questions are compulsory.
- (ii) The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
- Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each.
 Section C comprises of 6 question of 4 marks each. Section D comprises of 4 questions of 6 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternative in all such questions.
- (v) Use of calculators is not permitted

Section - A

Q1-Q10 are multiple choice type questions. Select the correct option.

1.	The value of the o	determinant $\begin{vmatrix} 1+a\\1\\1 \end{vmatrix}$	$ \begin{array}{cccc} 1 & 1 \\ 1+a & 1 \\ 1 & 1+a \end{array} $	is zero, then v	alue of a is
	(A)-3	(B) 0		(C) 1	(D) 3
2.	$If \begin{bmatrix} x+y \\ x-y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$	If $\begin{bmatrix} x+y\\ x-y \end{bmatrix} = \begin{bmatrix} 2 & 1\\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 1\\ -2 \end{bmatrix}$, then the value of (x,y) is which of the following ?			
	(A) (1, 1)	(B) (1, −1)		(C) (-1,1)	(D) (-1,-1)

3. The unit vector in the direction of $\hat{i} + \hat{j} + \hat{k}$ is :

(A)
$$\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$$
 (B) $\sqrt{3}(\hat{i}+\hat{j}+\hat{k})$ (C) $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}+\hat{k})$ (D) $\sqrt{2}(\hat{i}+\hat{j}+\hat{k})$

4. If a die is thrown and a card is selected at random from a deck of 52 playing cards, then the probability of getting an even number on the die and a spade card is :

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{4}$ (C) $\frac{1}{8}$ (D) $\frac{3}{4}$

5. LPP theory states that the optimal solution to any problem will be at

(A)the origin

- (B) a corner point of feasible region
- (C) the highest point of the feasible region
- (D) the lowest point of the feasible region

6. If
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}a$$
, then the value of a is ______.
(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) 1

7. Two events E and F are independent. If P(E) = 0.3 and $P(E \cup F) = 0.5$, then P(E/F) - P(F/E) equal to :

(A)
$$2/7$$
 (B) $3/35$ (C) $1/70$ (D) $1/7$

 $\int \frac{x^{3}}{x+1} dx \text{ is equal to :}$ (A) $x + \frac{x^{2}}{2} + \frac{x^{3}}{3} - \log|1-x| + C$ (B) $x + \frac{x^{2}}{2} - \frac{x^{3}}{3} - \log|1-x| + C$

(C)
$$x - \frac{x^2}{2} - \frac{x^3}{3} - \log|1 + x| + C$$
 (D) $x - \frac{x^2}{2} + \frac{x^3}{3} - \log|1 + x| + C$

9. The distance between the parallel planes 2x - 2y - z + 3 = 0 and 4x - 4y - 2z + 5 = 0 is :

10. The perpendicular distance of the plane 3x - 6y + 5z = 12 from origin is :

(A)
$$\frac{-\sqrt{70}}{12}$$
 (B) $\frac{-12}{\sqrt{70}}$ (C) $\frac{12}{\sqrt{70}}$ (D) $\frac{\sqrt{70}}{12}$

(Q11-Q15) Fill in the blanks.

8.

11. If f:R \rightarrow R is given by $f(x) = (3-x^3)^{1/3}$. Then fof(x) is

12. If
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{8x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
, is continuous at $x = 0$, then the value of k is.....

- 13. If A and B are symmetric matrices, then BA 2AB is a matrix.
- 14. For all real values of x, the function $f(x) = e^x e^{-x}$ is

OR

A particle is moving in a straight line. Its displacement is given by $s = 4t - 2t^2$, where t is in seconds. Then the particle will come to rest after second.

15. If \vec{a} , \vec{b} , \vec{c} are coplanar then $[\vec{a} \ \vec{b} \ \vec{c}]$ will be

OR

The vectors $2\hat{i} - 3\hat{j} + 5\hat{k}$ and $-\lambda\hat{i} + 2\hat{j} + 2\hat{k}$ are mutually perpendicular if $\lambda = \dots$

(Q16-Q20) Answer the following questions.

16. For what values of k, the system of linear equations

$$x + y + z = 2$$

$$2x + y - z = 3$$

$$3x + 2y + kz = 4$$

has a unique solution ?

17. Evaluate :
$$\int_{2}^{4} \frac{x}{x^{2}+1} dx$$

18. Evaluate
$$\int \frac{(1+\cos x)}{x+\sin x} dx$$

Evaluate $\int \frac{dx}{\sqrt{16-9x^2}}$

OR

2/4

ALLEN

- 19. Evaluate $\int \frac{(x^2+2)}{x+1} dx$
- **20.** Find the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} + x^{1/5} = 0$.

Section - B

21. Solve for x : $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}3x$.

OR

If A = {1, 2, 3,, 9} and R be the relation in A × A defined by (a, b) R (c, d) if a + d = b + c for a, b, c, $d \in A$ is an equivalence relation, then find the equivalence class [(2,5)].

- **22.** Differentiate $\tan^{-1} \left\lfloor \frac{\sqrt{1 + x^2} 1}{x} \right\rfloor$ with respect to x
- 23. The length x, of a rectangle is decreasing at the rate of 5 cm/minute and the width y, is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rate of change of the area of the rectangle.
- 24. Show that the four points A,B,C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-(\hat{j} + \hat{k})$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4(\hat{i} + \hat{j} + \hat{k})$, respectively are coplanar.

OR

If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.

- 25. Find the points on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of 5 units from the point P(1,3,3).
- 26. A black and a red die are rolled together. Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Section - C

- 27. Consider $f: R_+ \rightarrow [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.
- 28. If x = acos³ θ and y = asin³ θ , then find the value of $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{6}$. OR

If
$$(ax + b)e^{y/x} = x$$
, then show that $x^3 \left(\frac{d^2y}{dx^2}\right) = \left(x\frac{dy}{dx} - y\right)^2$

29. Solve the following differential equation : $x^2 \frac{dy}{dx} = y^2 + 2xy$. Given that y = 1, when x = 1.

ALLEN

30. Evaluate :
$$\int_{-2}^{2} \frac{x^2}{1+5^x} dx$$

31. Two cards are drawn simultaneously (without replacement) from a well-shuffled pack of 52 cards: Find the mean and variance of the number of red cards

OR

There are three coins. One is a two-headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the times and third is also a biased coin that comes up tails 40% of the times. One of the three coins is chosen at random and tossed, and it shows heads. What is the probability that it was the two-headed coin ?

32. A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 units of calories. Two foods A and B are available at a cost of Rs. 5 and Rs. 4 per unit respectively. One unit of the food A contains 200 units of vitamins, 1 unit of minerals and 40 units of calories, while one unit of the food B contains 100 units of vitamins, 2 units of minerals and 40 units of calories. Find what combination of the foods A and B should be used to have least cost, but it must satisfy the requirements of the sick person. Form the equation as LPP and solve it graphically.

<u>Section - D</u>

33. If
$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, find A^{-1} . Use it to solve the system of equations
 $2x - 3y + 5z = 11$
 $3x + 2y - 4z = -5$
 $x + y - 2z = -3$

OR

Using elementary row transformations, find the inverse of the matrix $A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{vmatrix}$

- **34.** Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).
- 35. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4r}{3}$. Also show that the maximum volume of the cone is $\frac{8}{27}$ of the volume of the sphere.

OR

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R

is
$$\frac{2R}{\sqrt{3}}$$
. Also find the maximum volume.

36. Find the coordinates of the point where the line through the points (3, -4, -5) and (2, -3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2, -3) and (0, 4, 3).