FIRST PRE BOARD EXAMINATION (2019-20)

CLASS: XII

Subject: MATHEMATICS

Time Allowed: 3 Hours

Date: 15 .12.2019 Maximum Marks: 80

General instructions:

- (1) **All** questions are **compulsory**.
- (2) Please check that this question paper contains 7 printed pages only.
- (3) Please check that this question paper contains 36 questions.
- (4) There are four sections, Section A, B, C and D.
- (5) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of r marks each. Section D comprises of 4 questions of 6 marks each.
- (6) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
- (7) Use of calculators is not permitted.

Section- A [20X1= 20 Marks]

- 1.Given $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, which of the following result is true?
 - (a) $A^2 = I$ (B) $A^2 = -I$ (C) $A^2 = 2I$ (D) None of these
- 2. If A is 2X3 matrix , B is a matrix such that *A'B and BA'* are both defined then B is of the type
 - (a) 2X3 (b) 2X2 (c) 3X3 (d) 3X2

3. If $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = 144$ and $|\vec{a}| = 4$ then $|\vec{b}|$ will be

(a) 3 (b) 4 (c) 2 (d) 9

- 4. If A and B are two independent events such that P(A)= 0.2, P(B) = 0.4 then P(AUB) is
- (a) 0.72 (b) 0.62 (c) 1 (d) 0.52

5. $Cos^{-1}\left(Cos\frac{7\pi}{6}\right) + Sin^{-1}\left(Sin\frac{2\pi}{3}\right)$ is equal to

(a)
$$-\frac{\pi}{6}$$
 b) $\frac{7\pi}{6}$ (c) $-\frac{\pi}{4}$ (d) $\frac{\pi}{3}$

- 6. The point which lie in the half plane $x 2y \ge 6$
- (a) (8,1) (b) (4,2) (c) (2,3) (d) (4,5)
- 7. Probability of solving specific problem by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, the

probability the problem will be solved is

(a) 2/3 (b) 1/3 (c) $\frac{3}{4}$ (d) none of these

8. Value of $\int Cotx. \log Sinx \, dx$ is

(a) logSinx + c (b) $(logSinx)^2 + c$ (c) $\frac{(logSinx)^2}{2} + c$ (d) none of these

9. Distance between the two planes 3x+5y+7z=3 and 9x+15y+21z=27?

(a) 0 (b) 3 (c) $6/\sqrt{83}$ (d) 6

- 10. Equation of the line $\frac{x-1}{3} = \frac{y-5}{1}$, z = 2 in vector form is
- (a) $\vec{r} = (3\hat{\iota} + \hat{\jmath}) + \mu(\hat{\iota} + 5\hat{\jmath} + 2\hat{k})$ (b) $\vec{r} = (\hat{\iota} + 5\hat{\jmath} + 2\hat{k}) + \mu(\hat{\imath}\hat{\iota} + \hat{\jmath})$

(c) $\vec{r} = (\hat{\iota} + 5\hat{j}) + \mu(3\hat{\iota} + \hat{j} + 2\hat{k})$ (d) none of these

11. If $f = \{(1, a), (2, b), (3, c)\}$ and g are two functions such that

fog = gof = I, then value of function g is

12. If $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then value of k is... 13. If $\begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$, then value of x will be..... Page **2** of **6** 14. If the cost function $C(x)=x^2 + 3x + 2$ and revenue function R(x)=15x + 7. What value of x will make Marginal revenue and marginal cost equal?

OR

Find the interval in which $10 - 6x - 2x^2$ is strictly decreasing.

15. The magnitude of projection of $(\hat{\iota} - \hat{2}j + \hat{k})$ on $(\hat{\iota} + j + \hat{3}k)$ is OR

If $(\hat{i} + \hat{2}j + 5\hat{k}) \times (p\hat{i} - q\hat{j} + 5\hat{k}) = \vec{0}$, then value of 'q' is... 16. Is $\begin{vmatrix} x & a & x + a \\ y & b & y + b \\ z & c & z + c \end{vmatrix} = 0$? Justify your answer.

17. Evaluate $\int_0^1 \frac{2x}{1+x^2} dx$

18. $\int x^6 Sin(5x^7) dx = \frac{k}{5} Cos(5x^7), x \neq 0$ then the value of *k* if constant of integration is zero.

OR

Find $\int \frac{dx}{secx+tanx}$

19. Find $\int \frac{dx}{\sin^2 x \cdot \cos^2 x}$

20. Find the general solution of the differential equation $\frac{dy}{dx} = y \cdot tanx$.

Section- B [6X2= 12 Marks]

21. Write the value of $Cot^{-1}(\sqrt{1+x^2}-x)$ in the simplified form.

OR

Check whether the relation R on real numbers defined by

 $R = \{(x, y) : x \le y^3\}$ is transitive.

Page 3 of 6

- 22. If $y = Sin^{-1}x$ then prove that $(1 x^2)y_2 xy_1 = 0$
- 23. Find the approximate change in the surface area of a cube of side x meters caused by decreasing the side by 1%.
- 24. Find μ if the vectors $\vec{a} = \hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} \hat{k}$ and $\vec{c} = \mu\hat{i} + 7\hat{j} + 3\hat{k}$ are coplanar.

OR

Prove that $\begin{bmatrix} \vec{a}, \vec{b}, \vec{c} + \vec{d} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{b}, \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a}, \vec{b}, \vec{d} \end{bmatrix}$

25. Find the angle between the lines

 $\frac{2-x}{2} = \frac{y-1}{2} = \frac{z+3}{-3}$ and $\frac{x+2}{-1} = \frac{y-4}{8}$, z = 5

26. A die is thrown. If E is the event 'the number appearing is a multiple of

3' and F be the event 'the number appearing is even' then find whether E and F are independent?

Section- C [6X4= 24 Marks]

27. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 5$. Show that

 $f: N \rightarrow s$ where S is the range of f is invertible. Find the inverse of f.

28. Prove that $-1 \le \frac{2^{x+1}}{1+4^x} \le 1$ hence differentiate the following w.r.t. x, $y = Sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right).$

OR

If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$. Show that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$

29. Show that the differential equation $2xy + y^2 - 2x^2 \frac{dy}{dx} = 0$ is homogenous hence find its particular solution at y=2 when x=1.

30. Evaluate $\int_0^{\pi} \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$

31. Two numbers are selected at random (without replacement) from first7

natural numbers. If X denotes smaller of two numbers obtained. Find the probability distribution of X. Also, find mean of the distribution.

OR

Assume that the chance of a patient having a heart attack is 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?

32. Minimise
$$Z = x + 2y$$
 subject to $2x + y \ge 3$, $x + 2y \ge 6$, $x, y \ge 0$.

Section- D [4X6= 24 Marks]

33. Using properties of determinants, prove that

$$\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca)$$
OR
$$If A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, find A^{-1}. Using A^{-1} solve the system of equations$$

2x-3y+5z=11, 3x+2y-4z=-5, x+y-2z=-3.

34. Using integration, find the area of the region bounded by

$$\{(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$$

35. A given quantity of metal is to be cast into a solid half circular cylinder with a rectangular base and semi circular ends. Show that in order that total surface area is minimum, the ratio of length of cylinder to the diameter of semi circular ends is π : π + 2

OR

Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base.

36. Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing them.