COMPUTER SCIENCE

General Instructions:

(a) All questions are compulsory.
(b) Programming Language with C++
(c) In Question 2(b,d),3 and 4 has internal choices.

Q. No. Part Question Description

Marks

 the following:(i) else
(ii) Long
(iii) 4Queue (iv) _count
(b) The following C++ code during compilation reports errors as follows:

Error: 'ofstream' not declared
Error:'strupr' not
declared
Error: 'strcat' not
declared Error: 'FIN'
not declared
Write the names of the correct header files, which must be included to compile the code successfully
(c) Rewrite the following C++ code after removing any/all syntactical errors with each correction underlined.
Note: Assume all required header files are already included in the program.
Typedef Count int; void
main()
\{
Count C;
cout<<"Enter the count:"; cin>>C;
for ($\mathrm{K}=1 ; \mathrm{K}<=\mathrm{C} ; \mathrm{K}++$)
cout<< C "*" K <<endl;
\}
(d) Find and write the output of the following C++ program code:

Note: Assume all required header files are already included in the program. void Revert(int \&Num, int Last=2)

```
{
    Last=(Last%2==0)?Last+1:Last-1; for(int
    C=1;C<=Last; C++)
        Num+=C;
}
void main()
{
    int A=20,B=4;
    Revert(A,B);
    cout<<A<<"&"<<B<<endl;
    B--;
    Revert(A,B);
    cout<<A<<"#"<<B<<endl;
    Revert(B);
    cout<<A<<"#"<<B<<endl;
}
```

(e) Find and write the output of the following $\mathrm{C}++$ program code:

Note: Assume all required header files are already included in the program.
\#define Modify(N) N*3+10 void
main()
\{
int LIST[]=\{10,15,12,17\};
int * $\mathrm{P}=$ LIST, C ; for $(\mathrm{C}=3$;
$\mathrm{C}>=0 ; \mathrm{C}--$)
LIST[I]=Modify(LIST[I]); for
(C=0; C<=3; C++)
\{
cout<<*P<<":";
P++;
\}
\}
(f) Look at the following C++ code and find the possible output(s) from the options
(i) to (iv) following it. Also, write the highest and lowest values that can be assigned in the array A .
Note:

- Assume all the required header files are already being included in the code.
- The function random(n) generates an integer between 0 and $n-1$.
void main()
\{
randomize();
int A[4], C;
for ($\mathrm{C}=0 ; \mathrm{C}<4 ; \mathrm{C}++$)
$\mathrm{A}[\mathrm{C}]=$ random $(\mathrm{C}+1)+10$;
for (C=3; C>=0; C--)
cout<<A[C]<<"@";
\}
(a) Which function(s) out of the following can be considered as overloaded function(s) in the same program? Also, write the reason for not considering the other(s) as overloaded function(s).
void Execute(char A,int B); //Function 1 void Execute(int A,char B); //Function 2 void Execute(int P=10); //Function 3 void Execute(); //Function 4 int Execute(int A); //Function 5 void Execute(int \&K);
(b) Observe the following $\mathrm{C}++$ code and answer the questions (i) and (ii). Note: Assume all necessary files are included.
class FIRST
\{ int Num1;
public:
void Display() //Member Function 1
\{ cout<<Num1<<endl;
\}
\};
class SECOND: public FIRST
\{
int Num2;
public:
void Display() //Member Function 2
\{ cout<<Num2<<endl;
\}
\};
void main()
\{
SECOND S;

//Statement 1

//Statement 2
\}
(i) Which Object Oriented Programming feature is illustrated by the definitions of classes FIRST and SECOND?
(ii) Write Statement 1 and Statement 2 to execute Member Function 1 and Member Function 2 respectively using the object S.

OR

(b) Write any four differences between Constructor and Destructor function with respect to object oriented programming.
(c) Write the definition of a class CONTAINER in C++ with the following description: Private Members

- Radius,Height // float
- Type // int (1 for Cone,2 for Cylinder)
- Volume // float
- CalVolume() // Member function to calculate // volume as per the Type

Public Members

- GetValues() // A function to allow user to enter value // of Radius, Height and Type. Also, call

```
                                    // function CalVolume() from it.
- ShowAll() // A function to display Radius, Height,
// Type and Volume of Container
```

(d) Answer the questions (i) to (iv) based on the following:
class Teacher
\{
Int TCode;
protected:
Char Name[20];
public:
Teacher();
void Enter(); void Show();
\};
class Course
\{
int ID;
protected:
Char Title[30];
public:
Course();
void Initiate();
void Display();
\};
class Schedule: public Course, private Teacher
\{
int DD,MM,YYYY;
public: Schedule();
void Start(); void
View();
\};
void main()
\{
Schedule S;
\}
(i) Which type of Inheritance out of the following is illustrated in the above example? Single Level Inheritance, Multilevel Inheritance, Multiple Inheritance?
(ii) Write the names of all the members, which are directly accessible by the member function View() of class Schedule.
(iii) Write the names of all the members, which are directly accessible by the object S of class Schedule declared in the main() function.
(iv) What will be the order of execution of the constructors, when the object S of class Schedule is declared inside main() function?

OR

(d) Consider the following class State :
class State
\{
protected :
int tp;
public:
State() $\{\operatorname{tp}=0 ;\}$
void inctp() $\{$ tp++; $\}$;
int gettp(); $\{$ return tp; \}

Write a code in C++ to publically derive another class 'District' with the following additional members derived in the public visibility mode.

Data Members :

Dname	string
Distance	float
Population	long int

Member functions :

DINPUT() : To enter Dname, Distance and population DOUTPUT() : To display the data members on the screen.
(a) Write the definition of a function SumEO(int VALUES[], int N) in C++, which should display the sum of even values and sum of odd values of the array separately.
Example: if the array VALUES contains 20, 21,22,25,53
Then the functions should display the output
as: Sum of even values $=42$ (i.e 20+22)
Sum of odd values $=99 \quad($ i.e $25+21+53)$
OR
(a) Write a user defined function in C++ to find the sum of both left and right diagonal elements from a two dimensional array.
(b) Write definition for a function UpperHalf(int Mat[4][4]) in C++, which displays the elements in the same way as per the example shown below. For example, if the content of the array Mat is as follows:

25242322
20191817
15141312
10987
The function should display the content in the following format:
25242322
201918
1514
10

OR

(b) Write a user defined function Reverse(int A[],int n) which accepts an integer array and its size as arguments(parameters) and reverse the array.
Example : if the array is $10,20,30,40,50$ then reversed array is $50,40,30,20,10$
(c) Let us assume Data[20][15] is a two dimensional array, which is stored in the memory along the row with each of its element occupying 2 bytes, find the address of the element Data[10][5], if the element Data[15][10] is stored at the memory location 15000 .

OR

(c) An array $\mathrm{A}[30][10]$ is stored in the memory with each element requiring 4 bytes of storage, if the base address of A is 4500 ,Find out memory locations of $\mathrm{A}[12][8]$, if the content is stored along the row.
(d) Write the definition of a member function AddPacket() for a class QUEUE in C++, to remove/delete a Packet from a dynamically allocated QUEUE of Packets considering the following code is already written as a part of the program.

```
struct Packet
{
int PID;
    char Address[20];
    Packet *LINK;
};
class QUEUE
{
    Packet *Front, *Rear;
public:
    QUEUE(){Front=NULL;Rear=NULL;}
    void AddPacket(); void
    DeletePacket();
    ~QUEUE();
};
OR
```

(d) Write a function in $\mathrm{C}++$ to delete a node containing Books information ,from a dynamically allocated stack of Books implemented with the help of the following structure:
struct Book
\{
int BNo;
char BName[20]; Book *Next;
\};
(e) Convert the following Infix expression to its equivalent Postfix expression,
showing the stack contents for each step of conversion:

$$
\mathbf{U} * \mathbf{V}+(\mathbf{W}-\mathbf{Z}) / \mathbf{X}
$$

OR

(e) Evaluate the following Postfix expression :
$4,10,5,+, *, 15,3, /,-$
(a) A text file named MATTER.TXT contains some text, which needs to be displayed such that every next character is separated by a symbol '\#'.

Write a function definition for HashDisplay() in C++ that would display the entire content of the file MATTER.TXT in the desired format.
Example:
If the file MATTER.TXT has the following content stored in it:
THE WORLD IS ROUND
The function HashDisplay() should display the following content:
T\#H\#E\# \#W\#O\#R\#L\#D\# \#I\#S\# \#R\#O\#U\#N\#D\#
(a) Write a function in $\mathrm{C}++$ to count the number of lowercase alphabets present in a text file "BOOK..txt".
(b) Write a definition for function TotalTeachers() in C++ to read each object of a binary file SCHOOLS.DAT, find the total number of teachers, whose data is stored in the file and display the same. Assume that the file SCHOOLS.DAT is created with the help of objects of class SCHOOLS, which is defined below:

```
class SCHOOLS
{
        int SCode; // School Code
    char SName[20]; // School Name
    int NOT; // Number of Teachers in the school public:
    void Display()
    {cout<<SCode<<"#"<<SName<<"#"<<NOT<<endl;} int
    RNOT(){return NOT;}
};
```


OR

(b) Write a function in $\mathrm{C}++$ to add more new objects at the bottom of a binary file "STUDENT.dat", assuming the binary file is containing the objects of the following class :
class STU
\{
int Rno;
char Sname[20];
public: void Enter()
\{
cin>>Rno;gets(Sname);
\}
void show()
\{
count << Rno<<sname<<endl;
\}
\};
(c) Find the output of the following C++ code considering that the binary file SCHOOLS.DAT exists on the hard disk with the following records of 10 schools of the class SCHOOLS as declared in the previous question (4 b).

OR

(c) Which file stream is required for seekg() ?
(a) Observe the following tables VIDEO and MEMBER carefully and write the name of the RDBMS operation out of (i) SELECTION (ii) PROJECTION (iii) UNION (iv) CARTESIAN PRODUCT, which has been used to produce the output as shown below, Also, find the Degree and Cardinality of the final result.

TABLE: VIDEO

VNO	VNAME	TYPE
F101	The Last Battle	Fiction
C101	Angels and Devils	Comedy
A102	Daredevils	Adventure

TABLE: MEMBER

MNO	MNAME
M101	Namish Gupta
M102	Sana Sheikh
M103	Lara James

FINAL RESULT

VNO	VNAME	TYPE	MNO	MNAME
F101	The Last Battle	Fiction	M101	Namish Gupta
F101	The Last Battle	Fiction	M102	Sana Sheikh
F101	The Last Battle	Fiction	M103	Lara James
C101	Angels and Devils	Comedy	M101	Namish Gupta
C101	Angels and Devils	Comedy	M102	Sana Sheikh
C101	Angels and Devils	Comedy	M103	Lara James
A102	Daredevils	Adventure	M101	Namish Gupta
A102	Daredevils	Adventure	M102	Sana Sheikh
A102	Daredevils	Adventure	M103	Lara James

(b)

Write SQL queries for (i) to (iv) and find outputs for SQL queries (v) to (viii), which are based on the tables.

Table: ACCOUNT

ANO	ANAME	ADDRESS
101	Nirja Singh	Bangalore
102	Rohan Gupta	Chennai
103	Ali Reza	Hyderabad
104	Rishabh Jain	Chennai
105	Simran Kaur	Chandigarh

Table: TRANSACT

TRNO	ANO	AMOUNT	TYPE	DOT
T001	101	2500	Withdraw	$2017-12-21$
T002	103	3000	Deposit	$2017-06-01$
T003	102	2000	Withdraw	$2017-05-12$
T004	103	1000	Deposit	$2017-10-22$
T005	101	12000	Deposit	$2017-11-06$

(i) To display details of all transactions of TYPE Deposit from Table

TRANSACT.
(ii) To display the ANO and AMOUNT of all Deposits and Withdrawals done in the month of October 2017 from table TRANSACT.
(iii) To display the last date of transaction (DOT) from the table TRANSACT for the Accounts having ANO as 103.
(iv) To display all ANO, ANAME and DOT of those persons from tables ACCOUNT and TRANSACT who have done transactions less than or equal to 3000 .
(v) SELECT ANO, ANAME FROM ACCOUNT WHERE ADDRESS NOT IN ('CHENNAI', 'BANGALORE');
(vi) SELECT DISTINCT ANO FROM TRANSACT;
(vii) SELECT ANO, COUNT(*), MIN(AMOUNT) FROM TRANSACT GROUP BY ANO HAVING COUNT(*)> 1;
(viii) SELECT COUNT(*), SUM(AMOUNT) FROM TRANSACT WHERE DOT <= '2017-06-01';
(a) State any one Absorption Law of Boolean Algebra and verify it using truth table.
(b) Draw the Logic Circuit of the following Boolean Expression: ($\mathbf{U}^{\mathbf{\prime}}+\mathbf{V}$).($\mathbf{V}^{\mathbf{\prime}}+\mathbf{W}^{\mathbf{\prime}}$)
(c) Derive a Canonical POS expression for a Boolean function FN, represented by the following truth table:

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{F N}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

(d) Reduce the following Boolean Expression to its simplest form using K-Map $\mathbf{F}(\mathbf{U}, \mathbf{V}, \mathbf{W}, \mathbf{Z})=\Sigma(\mathbf{3}, 5,6,7,11,12,13,15)$
(a) Differentiate between Bus Topology and Star Topology of Networks. What are the advantages and disadvantages of Star Topology over Bus Topology?
(b) Classify each of the following Web Scripting as Client Side Scripting and Server Side Scripting:
(i) JavaScripting
(ii) ASP
(iii) VB Scripting
(iv) JSP
(c) Write the expanded names for the following abbreviated terms used in

Networking and Communications:
(i) SMTP
(ii) VoIP
(iii) GSM
(iv) WLL
(d) CASE STUDY BASED QUESTION:

Ayurveda Training Educational Institute is setting up its centre in Hyderabad with four specialised departments for Orthopedics, Neurology and Pediatrics along with an administrative office in separate buildings. The physical distances between these department buildings and the number of computers to be installed in these departments and administrative office as given as follows. You as a network expert have to answer the queries as raised by them in (i) to (iv).

Shortest distances between various locations in metres:

Administrative Office to Orthopedics Unit	55
Neurology Unit to Administrative Office	30
Orthopedics Unit to Neurology Unit	70
Pediatrics Unit to Neurology Unit	50
Pediatrics Unit to Administrative Office	40
Pediatrics Unit to Orthopedics Unit	110

Number of Computers installed at the various locations are as follows:

Pediatrics Unit	40
Administrative Office	140
Neurology	50
Orthopedics Unit	80

(i) Suggest the most suitable location to install the main server of this institution to get efficient connectivity.
(ii) Suggest the best cable layout for effective network connectivity of the
building having server with all the other buildings.
(iii) Suggest the devices to be installed in each of these buildings for connecting computers installed within the building out of the following:

- Gateway
- Modem
- Switch
(iv) Suggest the topology of the network and network cable for efficiently connecting each computer installed in each of the buildings out of the following:
Topologies : Bus topology, Star Topology
Network Cable: Single Pair Telephone Cable, Coaxial Cable, Ethernet Cable

