SECOND PRE BOARD EXAMINATION (2019-20)

CLASS: XII

Subject: MATHEMATICS
Time Allowed: 3 Hours

Date: $16 \mathbf{0 1 . 2 0 2 0}$
Maximum Marks: 80

General instructions:
(1) All questions are compulsory.
(2) Please check that this question paper contains 8 printed pages only.
(3) Please check that this question paper contains 36 questions.
(4) There are four sections, Section A, B, C and D.
(5) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of r marks each. Section D comprises of 4 questions of 6 marks each.
(6) There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
(7) Use of calculators is not permitted.

SECTION -A ($20 \times 1=20$ Marks)

Q 1. If a relation R is defined on the set Z of integers as follows :

$$
(a, b) \in R \Leftrightarrow a^{2}+b^{2}=25 \text {. Then, domain }(R) \text { is }
$$

(a) $\{3,4,5\}$
(b) $\{0,3,4,5\}$
(c) $\{0, \pm 3, \pm 4, \pm 5\}$
(d) None of these

Q 2. The value of $\tan \left\{\cos ^{-1} \frac{1}{5 \sqrt{2}}-\sin ^{-1} \frac{4}{\sqrt{17}}\right\}$ is
(a) $\frac{\sqrt{29}}{3}$
(b) $\frac{29}{3}$
(c) $\frac{\sqrt{3}}{29}$
(d) $\frac{3}{29}$

Q 3. The number of all possible matrices of order 3×3 with each entry 0 or 1 is
(a) 27
(b) 18
(c) 81
(d) 512

Q 4. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}-7 A$ is equal to
(a) A
(b) I - A
(c) I
(d) 3 A

Q 5. If $A_{r}=\left|\begin{array}{ccc}1 & r & 2^{r} \\ 2 & n & n^{2} \\ n & \frac{n(n+1)}{2} & 2^{n+1}\end{array}\right|$, then the value of $\sum_{r=1}^{n} A_{r}$ is
(a) n
(b) 2 n
(c) $-2 n$
(d) n^{2}

Q 6. If $\Delta_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ \mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{a}^{2} & \mathrm{~b}^{2} & \mathrm{c}^{2}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}1 & \mathrm{bc} & \mathrm{a} \\ 1 & \mathrm{ca} & \mathrm{b} \\ 1 & \mathrm{ab} & \mathrm{c}\end{array}\right|$, then
(a) $\Delta_{1}+\Delta_{2}=0$
(b) $\Delta_{1}+2 \Delta_{2}=0$
(c) $\Delta_{1}=\Delta_{2}$
(d) none of these

Q 7. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{1}{|\mathrm{x}|} & \text { for }|\mathrm{x}| \geq 1 \\ \mathrm{ax}{ }^{2}+\mathrm{b} & \text { for }|\mathrm{x}|<1\end{array}\right.$
If $f(x)$ is continuous and differentiable at any point, then
(a) $a=\frac{1}{2}, b=-\frac{3}{2}$
(b) $\mathrm{a}=-\frac{1}{2}, \mathrm{~b}=\frac{3}{2}$
(c) $a=1, b=-1$
(d) none of these

Q 8. The equation of motion of a particle is $s=2 t^{2}+\sin 2 t$, where s is in metres and t is in seconds. The velocity of the particle when its acceleration is 2 $\mathrm{m} / \mathrm{sec}^{2}$, is
(a) $\pi+\sqrt{3} \mathrm{~m} / \mathrm{sec}$
(b) $\frac{\pi}{3}+\sqrt{3} \mathrm{~m} / \mathrm{sec}$
(c) $\frac{2 \pi}{3}+\sqrt{3} \mathrm{~m} / \mathrm{sec}$
(d) $\frac{\pi}{3}+\frac{1}{\sqrt{3}} \mathrm{~m} / \mathrm{sec}$

Q 9. $\int \sqrt{\frac{\mathrm{x}}{1-\mathrm{x}}} \mathrm{dx}$ is equal to
(a) $\sin ^{-1} \sqrt{x}+C$
(b) $\sin ^{-1}\{\sqrt{x}-\sqrt{x(1-x)}\}+C$
(c) $\sin ^{-1}\{\sqrt{x(1-x)}\}+C$
(d) $\sin ^{-1} \sqrt{x}-\sqrt{x(1-x)}+C$

Q 10. $\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x^{x}\right)} d x=$
(a) $2 \log _{e} \cos \left(x e^{x}\right)+C$
(b) $\sec \left(x e^{x}\right)+C$
(c) $\tan \left(x e^{x}\right)+C$
(d) $\tan \left(x+e^{x}\right)+$

C
Q 11. Evaluate $\int \frac{x+3}{(x+4)^{2}} e^{x} d x=$
OR
Evaluate : $\int_{\pi / 4}^{\pi / 2} \sqrt{1-\sin 2 x} d x$

Q 12. Vectors \vec{a} and \vec{b} are inclined at angle $\theta=120^{\circ}$.
If $|\vec{a}|=1,|\vec{b}|=2$, then find value of $[(\vec{a}+3 \vec{b}) x(3 \vec{a}-\vec{b})]^{2}$.

Q 13. If the vectors $4 i+11 j+m k, 7 i+2 j+6 k$ and $i+5 j+4 k$ are coplanar, then find the value of m .
Q 14. Find the shortest distance between the lines

$$
\begin{gathered}
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and, } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} . \\
\text { OR }
\end{gathered}
$$

Evaluate $\int_{0}^{\pi / 2} \frac{\cos \theta}{(1+\sin \theta)(2+\sin \theta)} \mathrm{d} \theta$

Q 15. If a plane passes through the point $(1,1,1)$ and is perpendicular to the line $\frac{x-1}{3}=\frac{y-1}{0}=\frac{z-1}{4}$ then find its perpendicular distance from the origin .

Q 16. Find the point at which the maximum value of $x+y$, subject to the constraints $x+2 y \leq 70,2 x+y \leq 95, x, y \geq 0$.

OR

Find the projection of the vector $7 \mathrm{i}+\mathrm{j}-4 \mathrm{k}$ on $2 \mathrm{i}+6 \mathrm{j}+3 \mathrm{k}$.
Q 17. A speaks truth in 75% cases and B speaks truth in 80% cases then find the probability that they contradict each other.
Q 18. Two natural numbers are chosen at random from the first 20 natural numbers. Find the probability that their product is even.
Q 19. Find the solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi\left(\frac{y}{x}\right)}$.

Q 20. Evaluate $\int \frac{1}{1-\cos x-\sin x} d x=$

SECTION -B($6 \times 2=12$ Marks $)$

Q 21. What is the value of $\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$?
Q 22. If $y=\log \sqrt{\tan x}$, write $\frac{d y}{d x}$.
Q 23. Write the angle made by the tangent to the curve $x=e^{t} \cos t$, $y=e^{t} \sin t$ at $t=\frac{\pi}{4}$ with the x-axis.
Q 24. Find the projection of \vec{a} on \vec{b} if $\vec{a} \cdot \vec{b}=8$ and $\vec{b}=2 i+6 j+3 k$.
OR
Find the area of the triangle whose vertices are $\mathrm{A}(3,-1,2), \mathrm{B}(1,-1,-3)$ and $C(4,-3,1)$.

Q 25. If a line makes angles α, β and γ with the coordinate axes, find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma$.

Q 26. In a competition A, B and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.

OR

If $x^{y}=e^{x-y}$, prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.

SECTION -C($6 \times 4=24$ Marks $)$

Q 27. Evaluate : $\int_{0}^{1} \cot ^{-1}\left(1-x+x^{2}\right) d x$
Q 28. In a test, an examinee either guesses or copies or knows the answer to a multiple choice question with four choices. The probability that he makes a guess is $1 / 3$ and the probability that he copies the answer is $1 / 6$. The probability that his answer is correct, given that he copied it, is $1 / 8$. Find the probability that he knew the answer to the question, given that he correctly answered it.

OR

A company has two plants to manufacture scooters. Plant I manufactures 70% of the scooters and Plant II manufactures 30%. At Plant I, 80% of the scooters are rated as of standard quality and at Plant II, 90% of the scooters are rated as of standard quality. A scooter is chosen at random and is found to be of standard quality. What is the probability that it has come from Plant II?

Q 29. In a culture the bacteria count is 100000 . The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Q 30. A house wife wishes to mix together two kinds of food, X and Y, in such a way that the mixture contains at least 10 units of vitamin $\mathrm{A}, 12$ units of vitamin B and 8 units of vitamin C . The vitamin contents of one kg of food is given below:
Vitamin A Vitamin B \quad Vitamin C

Food X: 1 2
Food Y: 2
2
1
One kg of food X costs Rs 6 and one kg of food Y costs Rs 10. Find the least cost of the mixture which will produce the diet.

Q 31. Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{x+2}$ is one-one. Find the inverse of the function
$\mathrm{f}:[-1,1] \rightarrow$ Range (f).
Q 32. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{1-\cos 4 \mathrm{x}}{\mathrm{x}^{2}} & , \text { if } \mathrm{x}<0 \\ \mathrm{a} & , \text { if } \mathrm{x}=0 \\ \frac{\sqrt{\mathrm{x}}}{\sqrt{16+\sqrt{x}}-4} & , \text { if } \mathrm{x}>0\end{array}\right.$
Determine the value of a so that $f(x)$ is continuous at $x=0$.

OR

The function $f(x)=\left\{\begin{array}{ccc}x^{2} / a & , & \text { if } 0 \leq x<1 \\ a & , & \text { if } 1 \leq x<\sqrt{2} \\ \frac{2 b^{2}-4 b}{x^{2}}, & \text { if } \sqrt{2} \leq x<\infty\end{array}\right.$

Page 6 of 8

is continuous on $[0, \infty)$, then find the most suitable values of a and b.

$$
\text { SECTION - D(} 4 \times 6=24 \text { Marks })
$$

Q 33. Show that:

$$
\left|\begin{array}{ccc}
-a\left(b^{2}+c^{2}-a^{2}\right) & 2 b^{3} & 2 c^{3} \\
2 a^{3} & -b\left(c^{2}+a^{2}-b^{2}\right) & 2 c^{3} \\
2 a^{3} & 2 b^{3} & -c\left(a^{2}+b^{2}-c^{2}\right)
\end{array}\right|=a b c\left(a^{2}+b^{2}+c^{2}\right)^{3}
$$

OR
Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ by using elementary row transformations.
34. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of
radius R is $\frac{2 R}{\sqrt{3}}$.

OR

A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find this maximum volume.

Q 35. Using integration, find the area of the triangle $A B C$ coordinates of whose vertices are $A(2,5), B(4,7)$ and $C(6,2)$.

Q 36. Show the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the plane containing these lines.

