

ദേശീയഗാനം

ജനഗണമന അധിനായക ജയഹേ ഭാരത ഭാഗൃവിധാതാ, പഞ്ചാബസിന്ധു ഗുജറാത്ത മറാഠാ ദ്രാവിഡ ഉത്ക്കല ബംഗാ, വിന്ധൃഹിമാചല യമുനാഗംഗാ, ഉച്ഛല ജലധിതരംഗാ, തവശുഭനാമേ ജാഗേ, തവശുഭ ആശിഷ മാഗേ, ഗാഹേ തവ ജയ ഗാഥാ ജനഗണമംഗലദായക ജയഹേ ഭാരത ഭാഗൃവിധാതാ. ജയഹേ, ജയഹേ, ജയഹേ,

പ്രതിജ്ഞ

ഇന്ത്യ എന്റെ രാജ്യമാണ്. എല്ലാ ഇന്ത്യക്കാരും എന്റെ സഹോദരീ സഹോദരന്മാരാണ്.

ഞാൻ എന്റെ രാജ്യത്തെ സ്നേഹിക്കുന്നു; സമ്പൂർണവും വൈവിധ്യപൂർണവുമായ അതിന്റെ പാരമ്പര്യത്തിൽ ഞാൻ അഭിമാനം കൊള്ളുന്നു.

ഞാൻ എന്റെ മാതാപിതാക്കളെയും ഗുരുക്കന്മാരെയും മുതിർന്നവരെയും ബഹുമാനിക്കും.

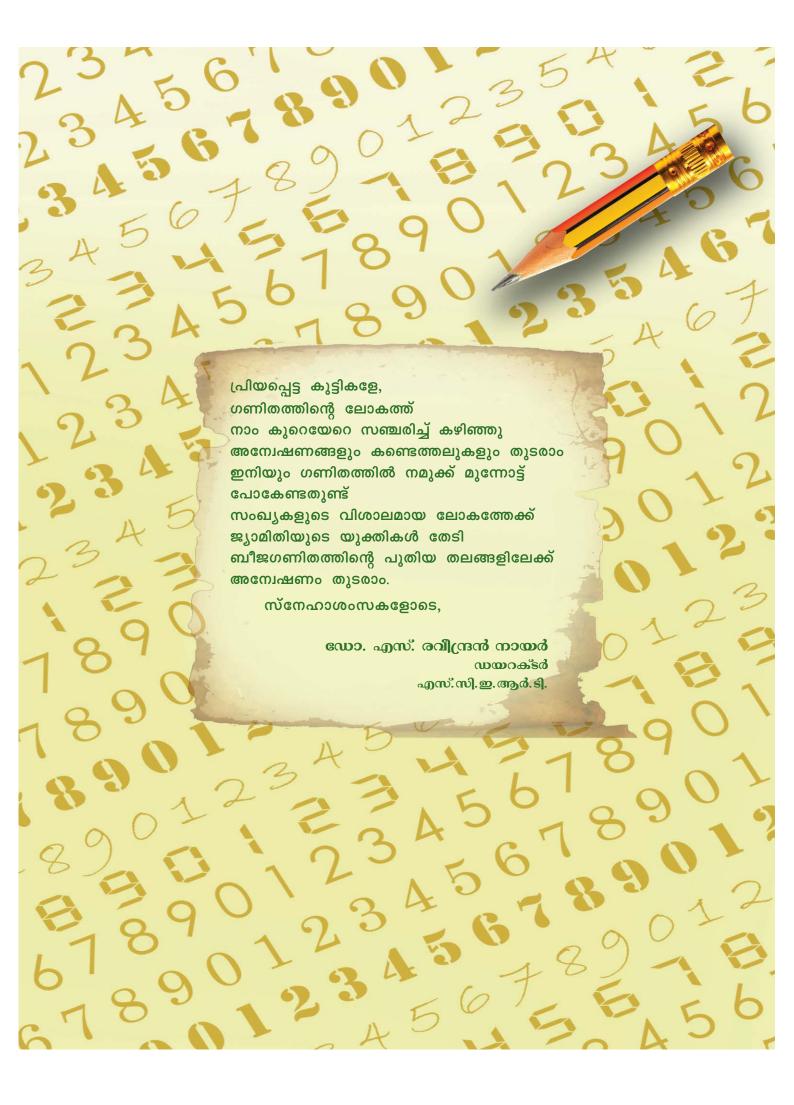
ഞാൻ എന്റെ രാജ്യത്തിന്റെയും എന്റെ നാട്ടുകാരുടെയും ക്ഷേമത്തിനും ഐശ്വര്യത്തിനും വേണ്ടി പ്രയത്നിക്കും.

Prepared by:

State Council of Educational Research and Training (SCERT)

Poojappura, Thiruvananthapuram 695 012, Kerala

Website: www.scertkerala.gov.in
E-mail: scertkerala@gmail.com
Phone: 0471-2341883, Fax: 0471-2341869
Typesetting and Layout: SCERT
Printed at: KBPS, Kakkanad, Kochi-30
© Department of Education, Government of Kerala



ശില്പശാലയിൽ പങ്കെടുത്തവർ

പാഠപുസ്തക രചന

ജി.എച്ച്.എസ്.എസ്. വാഴക്കാട് മലപ്പുറം

ഉണ്ണികൃഷ്ണൻ എം.വി.

ജി.എച്ച്.എസ്.എസ്. കുമ്പള കാസറഗോഡ്

നാരായണൻ കെ.

ബി.എ.ആർ.എച്ച്.എസ്.എസ്. ബോവിക്കാനം കാസറഗോഡ്

മോഹനൻ സി.

ജി.എച്ച്.എച്ച്.എസ്.എസ്. അങ്ങാടിക്കർ സൗത്ത്, ചെങ്ങന്നൂർ

ഉബൈദുള്ള കെ.സി.

എസ്.ഒ.എച്ച്.എസ്.എസ്. അരിക്കോട് മലപ്പുററം

വിജയകുമാർ ടി.കെ.

ജി.എച്ച്.എസ്.എസ്. ചെർക്കള കാസറഗോഡ്

ത്രീകുമാർ ടി.

ജി.ജി.എച്ച്.എസ്.എസ്. കരമന, തിരുവനന്തപുരം

വി.കെ. ബാലഗംഗാധരൻ

ജി.എം.എച്ച്.എസ്.എസ്. കാലിക്കറ്റ് യൂണിവേഴ്സിറ്റി കാമ്പസ് മലപ്പുറം

നാരായണനുണ്ണി

ഡയറ്റ്, പാലക്കാട്

എബ്രഹാം കുര്യൻ

സി.എച്ച്.എസ്.എസ്. പോത്തുകല്ല് നിലമ്പൂർ

സുനിൽകുമാർ വി.പി.

ജനത എച്ച്.എസ്.എസ്. വെഞ്ഞാറമൂട്

കൃഷ്ണപ്രസാദ്

സി.എം.എസ്.എ. വി.എച്ച്.എസ്.എസ്. ചപ്പനങ്ങാടി, മലപ്പുറം

കവർ

രാകേഷ് പി. നായർ

വിദഗ്ധർ

ഡോ.ഇ. കൃഷ്ണൻ

റിട്ട. പ്രൊഫ. യൂണിവേഴ്സിറ്റി കോളേജ് തിരുവനന്തപുരം

വേണുഗോപാൽ സി.

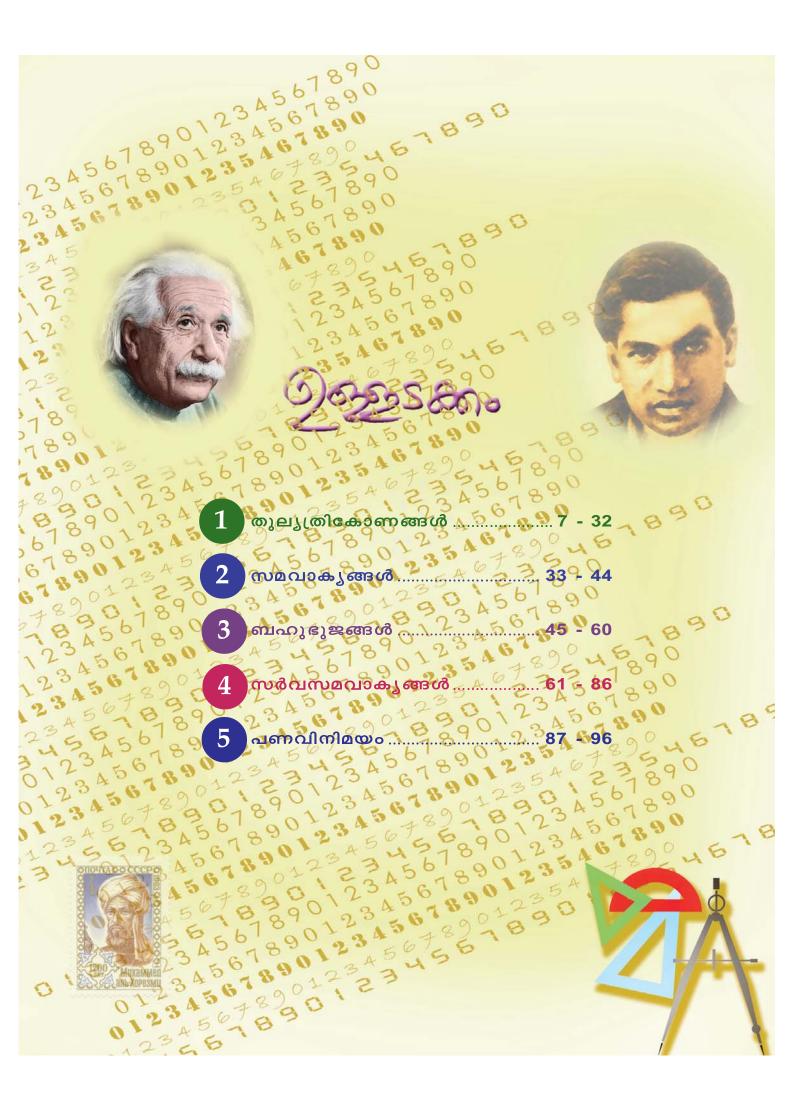
അസി. പ്രൊഫ., കോളേജ് ഓഫ് ടീച്ചർ എഡ്യൂക്കേഷൻ തിരുവനന്തപുരം

അക്കാദമിക് കോർഡിനേറ്റർ

സുജിത് കുമാർ ജി.

റിസർച്ച് ഓഫീസർ, എസ്.സി.ഇ.ആർ.ടി.

സംസ്ഥാന വിദ്യാഭ്യാസ ഗവേഷണ പരിശീലന സമിതി (SCERT) വിദ്യാഭവൻ, പൂജപ്പുര, തിരുവനന്തപുരം 695 012



ഈ പുസ്തകത്തിൽ സൗകര്യത്തിനായി ചില ചിഹ്നങ്ങൾ ഉപയോഗിച്ചിരിക്കുന്നു.

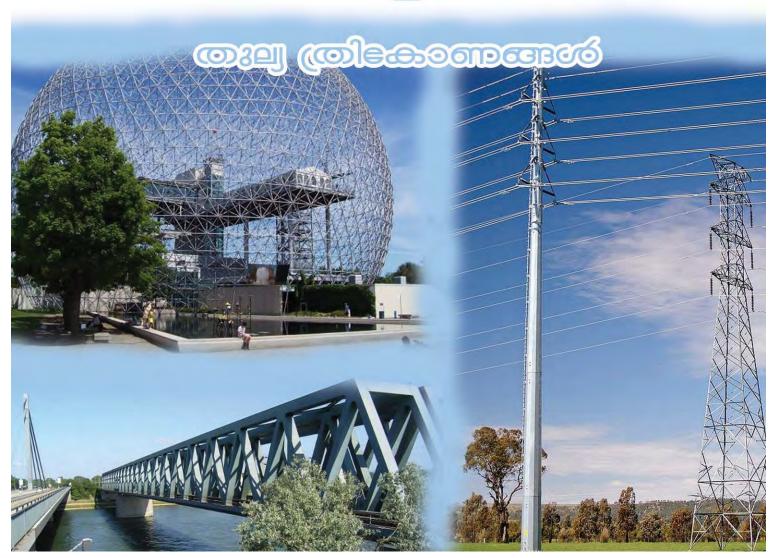
ICTസാധ്യത

കണക്ക് ചെയ്തുനോക്കാം

പ്രോജക്ട്

തിരിഞ്ഞുനോക്കുമ്പോൾ

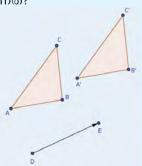
ചർച്ച ചെയ്യാം



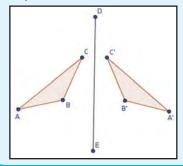
വശങ്ങളും കോണുകളും

ഒരു ത്രികോണത്തിന്റെ വശങ്ങളുടെയെല്ലാം നീളം പറഞ്ഞാൽ അതു വരയ്ക്കാനറിയാമല്ലോ.

ത്രികോണം ABC വരയ്ക്കുക. D, E എന്നീ രണ്ടു ബിന്ദുക്കൾ അടയാളപ്പെടുത്തുക. Translate by Vector എടുത്ത് $\Delta ABC, D, E$ എന്നിവയിൽ ക്രമമായി ക്ലിക്ക് ചെയ്യുക. പുതിയ ഒരു $\Delta A'B'C'$ കിട്ടുന്നില്ലേ. ഈ രണ്ടു ത്രികോണങ്ങളും തമ്മിലുള്ള ബന്ധം എന്താണ്? ΔABC യുടെ വശങ്ങളും കോണുകളും മാറ്റി നോക്കു. $\Delta A'B'C'$ മാറുന്നുണ്ടോ? E യുടെ സ്ഥാനം മാറ്റി നോക്കു. E എന്ന ബിന്ദു D യിൽ എത്തുമ്പോൾ എന്താണ് സംഭ വിക്കുന്നത്?



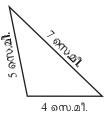
ABC എന്ന ത്രികോണവും DE എന്ന വരയും വരയ്ക്കുക. Reflect about Line എടുത്ത് ത്രികോണത്തിലും വരയിലും ക്ലിക്ക് ചെയ്യുക. $\Delta A'B'C'$ ലഭിക്കും. രണ്ടു ത്രികോണങ്ങളും തമ്മിലുള്ള ബന്ധം എന്താണ്? ΔABC യുടെ വശങ്ങളുടെ നീളം, DE എന്ന വരയുടെ സ്ഥാനം, ചരിവ് തുടങ്ങിയവ മാറ്റിനോക്കു.

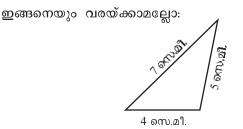


വശങ്ങളുടെ നീളം 4 സെന്റിമീറ്റർ, 5 സെന്റിമീറ്റർ, 7 സെന്റി മീറ്റർ.

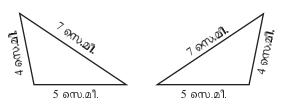
ത്രികോണം വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കാം:

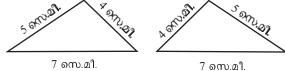




ഇതുപോലെ താഴത്തെ വശം 5 സെന്റിമീറ്റർ ആയി രണ്ടു ത്രികോണം വരയ്ക്കാം:



താഴത്തെ വശം 7 സെന്റിമീറ്റർ ആയും വരയ്ക്കാം:



ഈ ആറു ത്രികോണങ്ങളിലും വശങ്ങളെല്ലാം ഒന്നുതന്നെ യാണ്. കോണുകളോ?

ആദ്യം വരച്ച ത്രികോണത്തെ തിരിച്ചും മറിച്ചും വച്ചവ തന്നെയാണല്ലോ മറ്റെല്ലാം. ആദ്യം വരച്ച ത്രികോണം കട്ടിക്കടലാസിൽ വെട്ടിയെടുത്ത്, പലതര ത്തിൽ തിരിച്ചും മറിച്ചും മറ്റെല്ലാ ത്രികോണങ്ങളുമായും കൃത്യമായി ചേർത്തുവയ്ക്കാൻ കഴിയുന്നുണ്ടോ എന്നു നോക്കൂ.

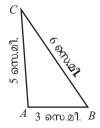
തുല്യമായ വശങ്ങൾ ചേർത്തുവച്ചാൽ കോണുകളും ചേർന്നിരിക്കു ന്നില്ലേ?

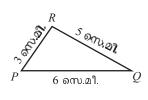
മറ്റു ചില നീളങ്ങളെടുത്ത് ഇതുപോലെ ത്രികോണങ്ങൾ വരച്ചു നോക്കൂ. അവയുടെയും കോണുകൾ തുല്യമല്ലേ?

ഇവിടെയെല്ലാം കണ്ട കാര്യം ഒരു പൊതുതത്വമായി എഴുതാം:

ഒരു ത്രികോണത്തിന്റെ വശങ്ങൾ മറ്റൊരു ത്രികോ ണത്തിന്റെ വശങ്ങൾക്ക് തുല്യമാണെങ്കിൽ, ഈ ത്രികോണങ്ങളിലെ കോണുകളും തുല്യമാണ്.

ഈ ത്രികോണങ്ങൾ നോക്കൂ.





ത്രികോണങ്ങളുടെ വശങ്ങൾ തുല്യമായതിനാൽ കോണു കളും തുല്യമാണ്.

അതായത്, ΔABC യിലെ ഓരോ കോണും ΔPQR ലെ ഓരോ കോണിന് തുല്യമാണ്.

 $\angle A$ ക്ക് തുല്യമായ കോൺ ഏതാണ്?

 $\angle A$ ആണ് ΔABC യിലെ ഏറ്റവും വലിയ കോൺ.

 ΔPQR ലെ ഏറ്റവും വലിയ കോൺ ഏതാണ്? അപ്പോൾ

$$\angle A = \dots$$

ഇനി രണ്ടു ത്രികോണങ്ങളിലെയും ഏറ്റവും ചെറിയ കോണുകൾ ഏതാണ്?

$$\angle C = \dots$$

ഇടത്തരം കോണുകൾ എടുത്താലോ?

$$\angle B = \dots$$

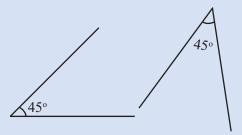
തുല്യത

വരകൾ, കോണുകൾ, ചതുരങ്ങൾ, ത്രികോ ണങ്ങൾ എന്നിങ്ങനെ പലതരം ജ്യാമിതീയ രൂപങ്ങളുണ്ട്.

ഒരേ നീളമുള്ള വരകൾ എങ്ങനെ വര ച്ചാലും തുല്യമാണെന്നു പറയാറുണ്ടല്ലോ.

4 സെ.മീ.

ഇതുപോലെ തന്നെ ഒരേ അള വുള്ള കോണുകളും.



ഒരേ നീളവും വീതിയുമുള്ള ചതുരങ്ങളും തുല്യമാണെന്നു പറയാം.

> ିସ ଅଧି 4 സെ.മീ. ୯

. ഉ 2 സെ.മീ. മറ്റൊരു തരത്തിലും ഇതു കാണാം: ΔABC യിലെ ഏറ്റവും വലിയ വശമാണ് BC; അതിനെതിരെയുള്ള കോണാണ് ഏറ്റവും വലിയ കോണായ $\angle A$.

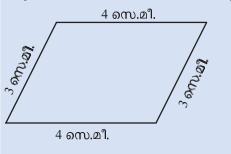
ഇതുപോലെ ഏറ്റവും ചെറിയ വശമായ AB യുടെ എതിരെയുള്ള കോണാണ്, ഏറ്റവും ചെറിയ കോണായ $\angle C$; ഇടത്തരം വശമായ AC യുടെ എതിരെയാണ്, ഇടത്തരം കോണായ $\angle B$.

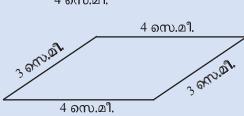
 ΔPQR ലും ഇങ്ങനെ തന്നെയാണ്.

അപ്പോൾ നേരത്തെ കണ്ട കാര്യം അൽപം കൂടി വിശദമായി ഇങ്ങനെ പറയാം:

ജ്യാമിതീയ തുല്യത

ചിത്രത്തിലെ സാമാന്തരികങ്ങൾ നോക്കൂ.



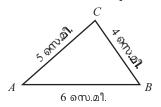


രണ്ട് സാമാന്തരികത്തിലെയും വശങ്ങൾ 4 സെന്റിമീറ്റർ, 3 സെന്റിമീറ്റർ എന്നിങ്ങ നെയാണ്. പക്ഷേ ഈ സാമാന്തരികങ്ങൾ തുല്യമാണെന്ന് പറയുന്നത് ശരിയല്ലല്ലോ. ജ്യാമിതീയ രൂപങ്ങളുടെ തുല്യതയെക്കു റിച്ച് യൂക്ലിഡ് പറയുന്നത് ഇങ്ങനെയാണ്;

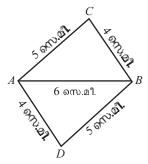
> ഒന്നിനോടൊന്നു പോച്ചീങ്ങുന്നവ തുധ്യമാണ്.

മുൻപേജിലെ വരകളും കോണുകളും ചതുരങ്ങളുമെല്ലാം, ഒന്നു തിരിച്ചു വച്ചാൽ കൃത്യമായി ചേർന്നിരിക്കുമല്ലോ. ഒരു ത്രികോണത്തിന്റെ വശങ്ങൾ മറ്റൊരു ത്രികോ ണത്തിന്റെ വശങ്ങൾക്ക് തുല്യമാണെങ്കിൽ, ഈ ത്രികോണങ്ങളിലെ തുല്യമായ വശങ്ങൾക്ക് എതി രെയുള്ള കോണുകൾ തുല്യമാണ്.

ഇതുപയോഗിച്ചുള്ള ഒരു കണക്കു നോക്കാം. ചുവടെക്കാ ണുന്ന ത്രികോണം വരയ്ക്കുക:



ഇനി ഇതേ ത്രികോണം തന്നെ AB യുടെ ചുവട്ടിൽ, ഇടതും വലതും മാറ്റി വരയ്ക്കുക.



 ΔABC യിലെ AC, BC എന്നീ വശങ്ങൾ, ΔABD യിലെ BD, AD എന്നീ വശങ്ങൾക്ക് തുല്യമാണ്.

മൂന്നാമത്തെ വശം, രണ്ടു ത്രികോണങ്ങളിലും AB തന്നെ. മൂന്നു വശങ്ങളുടെയും നീളം തുല്യമായതിനാൽ, കോണു കളും തുല്യമാണ്. അതായത്

$$\angle CAB = \angle DBA$$
 $\angle CBA = \angle DAB$

AC, BD എന്നീ വരകളിൽ AB എന്ന വര കൂട്ടിമുട്ടുമ്പോഴു ണ്ടാകുന്ന മറുകോണുകളാണല്ലോ $\angle CAB$ യും $\angle DBA$ യും. ഇവ തുല്യമായതിനാൽ, ACയും BD യും സമാന്തരവരക ളാണ്.

ഇതുപോലെ BC യും AD യും സമാന്തരമാണ് (വിശദീക രിക്കാമോ?).

അതായത് *ACBD* ഒരു സാമാന്തരികമാണ് (ഏഴാംക്ലാ സിലെ സമാന്തരവരകൾ എന്ന പാഠത്തിലെ ഒരേ ദിശ എന്ന ഭാഗം).

അപ്പോൾ, രണ്ടു വശങ്ങളുടെ നീളം 5 സെന്റിമീറ്റർ, 6 സെന്റി മീറ്റർ, ഒരു വികർണം 8 സെന്റിമീറ്റർ ആയ സാമാന്തരികം വരയ്ക്കാമോ?

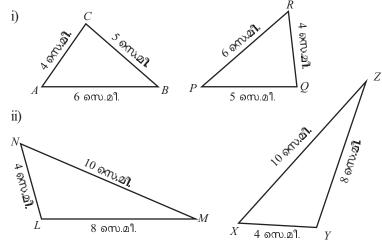
(1) ചുവടെയുള്ള ഓരോ ജോടി ചിത്രങ്ങളിലും, ഒരു ത്രികോണത്തിലെ കോണുകൾക്കു തുല്യമായ കോണുകൾ മറ്റേ ത്രികോണത്തിൽ നിന്ന് കണ്ടുപി ടിച്ച് എഴുതുക.

വാക്കും പൊരുളും

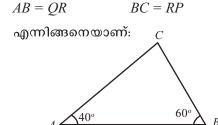
ഒരു ത്രികോണത്തിന്റെ വശങ്ങൾ, മറ്റൊരു ത്രികോണത്തിന്റെ വശങ്ങൾക്ക് തുല്യമാ ണെങ്കിൽ, അവ കൃത്യമായി ചേർത്തു വയ്ക്കാം എന്നു കണ്ടല്ലോ. യൂക്ലിഡിന്റെ ഭാഷയിൽ പറഞ്ഞാൽ

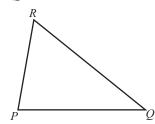
> ഒരു ത്രിക്കോണത്തിന്റെ വശങ്ങ് മറ്റൊരു ത്രികോണത്തിന്റെ വശങ്ങ്ക്കു തുധ്യമാണെ ജിൽ ഈ ത്രികോണങ്ങ് തുധ്യമാണ്.

യൂക്ലിഡ്, ഗ്രീക്കു ഭാഷയിലെഴുതിയ എല മെന്റ്സ് എന്ന പുസ്തകം നവോത്ഥാന കാല യൂറോപ്പിൽ ലാറ്റിൻ ഭാഷയിലേക്ക് വിവർത്തനം ചെയ്തു. 'യോജിക്കുക' എന്നതിന്റെ ലാറ്റിൻ വാക്ക് congruent എന്നാണ്. പത്തൊമ്പതാം നൂറ്റാണ്ടോടെ ജ്യാമിതീയ രൂപങ്ങളുടെ തുല്യത എന്ന തിന് ഇംഗ്ലീഷിൽ equal എന്നതിനു പകരം congruent എന്ന വാക്ക് ഉപയോഗിച്ചു തുടങ്ങി.



(2) ചുവടെ വരച്ചിരിക്കുന്ന രണ്ടു ത്രികോണങ്ങളിൽ





 ΔABC യിലെ $\angle C$ യും ΔPQR ലെ കോണുകളും കണ്ടുപിടിച്ച് എഴുതുക.

CA = PO

ഗണിതം

നമ്മുടെ ഭാഷ

ജ്യാമിതിയെക്കുറിച്ചുള്ള പുസ്തകങ്ങൾ മല യാളത്തിലേക്ക് മൊഴിമാറ്റം നടത്തിയപ്പോൾ congruent എന്നതിന് 'സർവസമം' എന്നാണ് ഉപയോഗിച്ചത്. ജ്യാമിതീയ രൂപ ങ്ങൾ ചേർന്നിരിക്കണമെങ്കിൽ എല്ലാ അള വുകളും (നീളവും കോണുമെല്ലാം) തുല്യ മായിരിക്കണമല്ലോ.

ഇതനുസരിച്ച്, ത്രികോണങ്ങളെക്കുറിച്ചുള്ള പൊതുതത്വം ഇങ്ങനെ എഴുതാം.

> ഒരു ത്രീകോണത്തിന്റെ വശങ്ങ് ഒറ്റൊരു ത്രീകോണത്തിന്റെ വശങ്ങ്ക്ക്കു തുധ്യമാണെ ജീൽ അവ സ്ർവസമമാണ്.

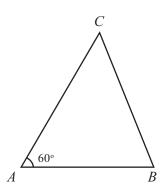
(3) ചുവടെ വരച്ചിരിക്കുന്ന ത്രികോണങ്ങളിൽ

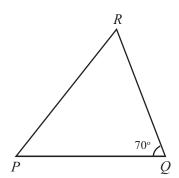
$$AB = QR$$

$$BC = PQ$$

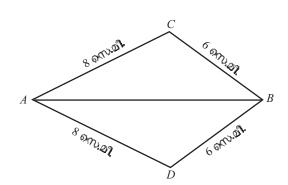
$$CA = RP$$

എന്നിങ്ങനെയാണ്:





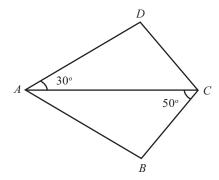
രണ്ടു ത്രികോണങ്ങളിലെയും മറ്റു കോണുകൾ കണ്ടുപിടിച്ച് എഴുതുക.



ചിത്രത്തിൽ ΔABC , ΔABD എന്നിവയിലെ കോണുകൾ തുല്യമാണോ? എന്തുകൊണ്ട്?

(5) ചിത്രത്തിലെ *ABCD* എന്ന ചതുർഭുജത്തിൽ

$$AB = AD$$
 $BC = CD$



ചതുർഭുജത്തിലെ കോണുകളെല്ലാം കണക്കാക്കുക.

ഒരു ത്രികോണത്തിന്റെ കോണുകൾ മറ്റൊരു ത്രികോണത്തിന്റെ കോണുകൾക്ക് തുല്യമാണെങ്കിൽ, ത്രികോണങ്ങളുടെ വശങ്ങൾ തുല്യമാകുമോ?

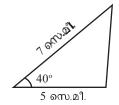
രണ്ടു വശങ്ങളും ഒരു കോണും

മൂന്ന് വശങ്ങളുടെയും നീളം തന്നാൽ ത്രികോണം വരയ്ക്കാം. രണ്ട് വശങ്ങളുടെ നീളവും അവ ചേരുന്ന കോണും പറഞ്ഞാലോ?

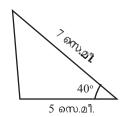
രണ്ടു വശങ്ങളുടെ നീളം 5 സെന്റിമീറ്റർ, 7 സെന്റിമീറ്റർ; അവ ചേർന്നു ണ്ടാകുന്ന കോൺ 40° .

ത്രികോണം വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കാം

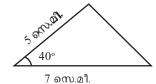


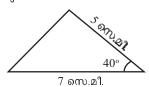
ഇങ്ങനെയുമാകാം



 $\min=0,\max=5$ ആയി സ്റ്റൈഡർ a നിർമി ക്കുക. വശങ്ങളുടെ നീളം 4,5,6 ആയ ഒരു ത്രികോണവും 4a,5a,6a ആയ മറ്റൊരു ത്രികോണവും നിർമിക്കുക. രണ്ടു ത്രികോണ ങ്ങളുടെയും കോണുകൾ നോക്കൂ. (Angle എടുത്ത് ത്രികോണത്തിൽ ക്ലിക്ക് ചെയ്താൽ കോൺ അളവുകൾ കാണാം.) a എന്ന സംഖ്യ മാറ്റി നോക്കൂ. എന്താണ് സംഭവിക്കുന്നത്? a=1 ആകുമ്പോഴോ?

താഴത്തെ വശം 7 സെന്റിമീറ്റർ ആയും വരയ്ക്കാം





മറ്റേതെങ്കിലും രീതിയിൽ വരയ്ക്കാമോ?

ഈ ത്രികോണങ്ങളുടെയെല്ലാം മൂന്നാമത്തെ വശങ്ങൾക്കും ഒരേ നീള മാണോ?

നേരത്തെ ചെയ്തതുപോലെ, ഒരു ത്രികോണം കട്ടിക്കടലാസിൽ മുറി ച്ചെടുത്ത്, തിരിച്ചും മറിച്ചും മറ്റു ത്രികോണങ്ങളുമായി ഒത്തു നോക്കൂ.

കൃത്യമായി ചേർന്നിരിക്കുന്നില്ലേ?

വശങ്ങളും കോണും മാറ്റി നോക്കൂ.

ഇവിടെ കണ്ട കാര്യം പൊതുതത്വമായി എഴുതാം.

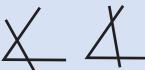
ഒരു ത്രികോണത്തിന്റെ രണ്ടു വശങ്ങളും അവ ചേരുന്ന കോണും, മറ്റൊരു ത്രികോണത്തിന്റെ രണ്ടു വശങ്ങൾക്കും അവ ചേരുന്ന കോണിനും തുല്യമാണെങ്കിൽ, ഈ ത്രികോ ണങ്ങളുടെ മൂന്നാമത്തെ വശങ്ങളും തുല്യമാണ്; മറ്റു രണ്ടു കോണുകളും തുല്യമാണ്.

ഈ ത്രികോണങ്ങൾ നോക്കൂ.

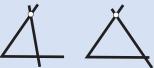
ത്രികോണനിശ്ചയം

നീളമുള്ള ഒരു ഈർക്കിൽ മടക്കി ഒരു കോൺ ഉണ്ടാക്കുക.

ഈ കോണിന്റെ രണ്ടു വശങ്ങളുടേയും മുക ളിൽ മറ്റൊരു ഈർക്കിൽ വച്ച് ഒരു ത്രികോ ണമുണ്ടാക്കണം. പല രീതിയിൽ വയ്ക്കാ മല്ലോ.

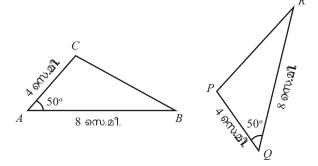


മുകളിലെ വശത്തിൽ ഒരു അടയാളമിട്ട് രണ്ടാമത്തെ ഈർക്കിൽ അതിൽക്കൂടി ത്തന്നെ കടന്നു പോകണമെന്നു പറ ഞ്ഞാലോ?



മുകളിലെ വശത്തിലും താഴത്തെ വശത്തിലും അടയാളമിട്ട്, ഈ രണ്ടടയാള ങ്ങളിൽക്കൂടിയും കടന്നുപോകത്തക്കവിധം ഈർക്കിൽ വയ്ക്കണമെന്നു പറഞ്ഞാലോ? എത്ര ത്രികോണങ്ങൾ ഉണ്ടാക്കാം?

ഒരു കോണും അതിന്റെ രണ്ട് വശങ്ങളുടെ നീളവും പറയുന്നതോടെ ത്രികോണം ഉറ പ്പിക്കാം, അല്ലേ?



 ΔABC യിലെ AB, CA എന്നീ വശങ്ങളും അവ ചേരുന്ന $\angle A$ യും ΔPQR ലെ QR, PQ എന്നീ വശങ്ങൾക്കും അവ ചേരുന്ന $\angle Q$ വിനും തുല്യമാണ്.

അതിനാൽ ഇപ്പോൾ കണ്ടതനുസരിച്ച്, ΔABC , ΔPQR ഇവ യിലെ മൂന്നാമത്തെ വശങ്ങളായ BC, PR എന്നീ വശങ്ങളും തുല്യമാണ്; $\angle B$, $\angle C$ ഇവ ΔPQR ലെ രണ്ടു കോണുകൾക്ക് തുല്യമാണ്.

 $\angle B$ യ്ക്കു തുല്യമായ കോൺ ഏതാണ്?

തുല്യമായ വശങ്ങൾക്ക് എതിരെയാണ് തുല്യമായ കോണുകൾ.

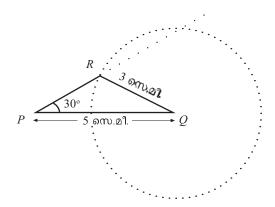
 ΔABC യിൽ AC എന്ന വശത്തിന് എതിരെയാണ് $\angle B$.

 ΔPQR ൽ AC യ്ക്കു തുല്യമായ വശം PQ; അതിനെതിരെ യുള്ള കോൺ $\angle R$.

അപ്പോൾ $\angle B = \angle R$.

ഇതുപോലെ $\angle C = \angle P$ എന്നും കാണാം (വിശദീകരി ക്കാമോ?). ഇനി ഈ ചിത്രങ്ങൾ നോക്കൂ:





ഇങ്ങനെയുള്ള ത്രികോണങ്ങൾ വരച്ചത് ഓർമയുണ്ടോ? (ഏഴാം ക്ലാസിലെ ത്രികോണനിർമിതി എന്ന പാഠത്തിൽ മറ്റൊരു കോൺ എന്ന ഭാഗം).

 ΔABC , ΔPQR ഇവയിൽ,

$$AB = PQ = 5$$
 സെ.മീ.

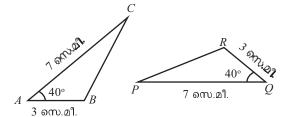
$$BC = QR = 3$$
 സെ.മീ.

$$\angle A = \angle P = 30^{\circ}$$

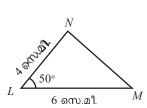
AC, PR എന്നീ വശങ്ങൾ തുല്യമാണോ?

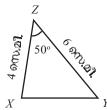
രണ്ടു വശങ്ങളും ഒരു കോണും തുല്യമായിട്ടും, മൂന്നാമത്തെ വശങ്ങൾ തുല്യമല്ലാത്തത് എന്തുകൊ ണ്ടാണ്?

(1) ചുവടെയുള്ള ഓരോ ജോടി ചിത്രങ്ങളിലും, ഒന്നാം ത്രികോണ ത്തിലെ കോണുകൾക്കു തുല്യമായ കോണുകൾ രണ്ടാം ത്രികോ ണത്തിൽ നിന്ന് കണ്ടുപിടിച്ച് എഴുതുക.



ii)



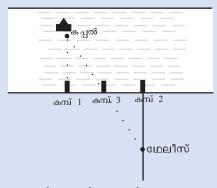


സർവസമതാതന്ത്രം

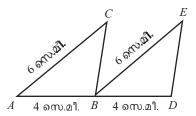
ബി.സി. ആറാം നൂറ്റാണ്ടിൽ ഗ്രീസിൽ ജീവി ച്ചിരുന്ന തത്വചിന്തകനും ഗണിതശാസ്ത്ര ജ്ഞനുമായിരുന്നു ഥേലീസ്. ദൂരെ കടലിൽ നങ്കൂരമിട്ടു കിടക്കുന്ന ഒരു കപ്പൽ കരയിൽ നിന്ന് എത്ര അകലെയാണെന്ന് കണക്കു കൂട്ടാൻ ഥേലീസ് ഉപയോഗിച്ചതായി പറയ പ്പെടുന്ന ഒരു സൂത്രം നോക്കു.

ആദ്യം കപ്പലിന് നേരെ തീരത്തോടു ചേർന്ന് ഒരു കമ്പു നാട്ടി. കുറച്ചകലെയായി തീരത്തോടു ചേർന്നുതന്നെ മറ്റൊരു കമ്പും. തുടർന്ന് ഈ രണ്ടു കമ്പുകളുടെ ഒത്ത നടുക്കായി മൂന്നാമതൊരു കമ്പും കുത്തി നിർത്തി.

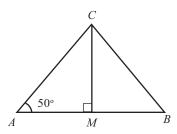
പിന്നീട്, രണ്ടാമത്തെ കമ്പിൽ നിന്ന് തീര ത്തിന് ലംബമായി കരയിൽ ഒരു വര വര ച്ചു. കപ്പലിനെ നോക്കിക്കൊണ്ട് ഈ വര യിലൂടെ പുറകോട്ടു നടന്ന് നടുവിലത്തെ കമ്പ് കപ്പലിന് നേരെ കണ്ടപ്പോൾ നടത്തം നിർത്തി. അപ്പോൾ നിന്നിരുന്ന സ്ഥാനം വര യിൽ അടയാളപ്പെടുത്തി.



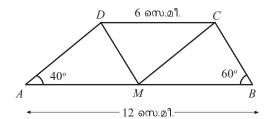
ഇപ്പോൾ കടലിലെ ത്രികോണവും കര യിലെ ത്രികോണവും സർവസമമായതി നാൽ (എന്തുകൊണ്ട്?) കരയിൽ നിന്ന് കപ്പ ലിലേക്കുള്ള ദൂരം ഥേലീസ് അവസാനം നിന്ന സ്ഥാനവും തീരവും തമ്മിലുള്ള ദൂരം തന്നെയാണല്ലോ. (2) ചിത്രത്തിൽ *AC, BE* ഇവ സമാന്തരവരകളാണ്.



- i) *BC, DE* എന്നീ വരകൾക്ക് ഒരേ നീളമാണോ? എന്തുകൊണ്ട്?
- $BC,\ DE$ എന്നീ വരകൾ സമാന്തര മാണോ?
- എന്തുകൊണ്ട്?
 (3) ചിത്രത്തിൽ *ACBD*സാമാന്തരിക
 മാണോ? എന്തു
 കൊണ്ട്?
- (4) ചിത്രത്തിൽ AB എന്ന വരയുടെ മധ്യബിന്ദുവാണ് M. ΔABC യിലെ മറ്റു രണ്ടു കോണുകൾ കണക്കാക്കുക.



(5) ചുവടെ കാണുന്ന ചിത്രത്തിൽ, AB, CD എന്നീ വശ ങ്ങൾ സമാന്തരമാണ്. AB യുടെ മധ്യബിന്ദുവാണ് M.



JT 219-2/Maths-8(M)

- i) ΔAMD , ΔMBC , ΔDCM ഇവയിലെ കോണുകളെല്ലാം കണക്കാക്കുക.
- ii) *AMCD, MBCD* എന്നീ ചതുർഭുജങ്ങളുടെ സവിശേഷത എന്താണ്?

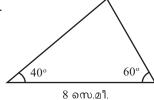
ഒരു വശവും രണ്ടു കോണുകളും

വശങ്ങളുടെയെല്ലാം നീളം പറഞ്ഞാൽ ത്രികോണം വരയ്ക്കാം; രണ്ടു വശങ്ങളുടെ നീളവും, അവ ചേരുന്ന കോണും പറഞ്ഞാലും ത്രികോണം വരയ്ക്കാം.

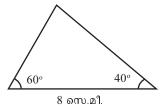
ഒരു വശത്തിന്റെ നീളവും അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകളും പറ ഞ്ഞാലോ?

ഒരു വശത്തിന്റെ നീളം 8 സെന്റിമീറ്റർ; അതിന്റെ രണ്ടറ്റത്ത് $40^\circ,\,60^\circ$ കോണുകൾ. ത്രികോണം വരയ്ക്കാമോ?

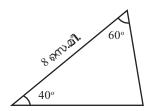
ഇങ്ങനെ വരയ്ക്കാം.

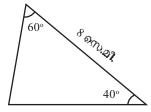


കോണുകളുടെ സ്ഥാനം മാറ്റി ഇങ്ങനെയും വരയ്ക്കാം.



ഇങ്ങനെയെല്ലാം വരയ്ക്കാം:





മറ്റേതെങ്കിലും രീതിയിൽ വരയ്ക്കാമോ?

ഇങ്ങനെ വരയ്ക്കുന്ന ത്രികോണങ്ങളുടെയെല്ലാം മൂന്നാമത്തെ കോൺ 80° തന്നെയാണ്. (എന്തുകൊണ്ട്?)

മറ്റു രണ്ടു വശങ്ങളോ?

ഇത്തരം ഒരു ത്രികോണം വെട്ടിയെടുത്ത്, മറ്റുള്ളവയുമായി തിരിച്ചും മറിച്ചും ചേർത്തുവച്ചു നോക്കൂ. മറ്റ് രണ്ട് വശങ്ങളും തുല്യമല്ലേ? അപ്പോൾ മൂന്നാമതൊരു പൊതുതത്വം കൂടിയായി.

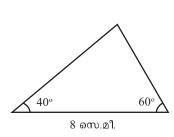
ഒരു ത്രികോണത്തിന്റെ ഒരു വശവും അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകളും, മറ്റൊരു ത്രികോണത്തിന്റെ ഒരു വശത്തിനും അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകൾക്കും തുല്യമാണെങ്കിൽ, ഈ ത്രികോണങ്ങളുടെ മൂന്നാമത്തെ കോണുകൾ തുല്യ മാണ്. തുല്യമായ കോണുകൾക്കെതിരെയുള്ള വശങ്ങളും തുല്യമാണ്.

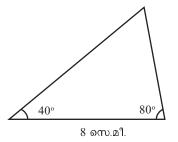
ഏത് ത്രികോണത്തിലും കോണുകളുടെ തുക 180° ആണല്ലോ. അപ്പോൾ ഒരു ത്രികോണത്തിലെ രണ്ട് കോണുകൾ അറിയാമെങ്കിൽ മൂന്നാമത്തെ കോൺ കണ്ടുപിടിക്കാം.

അപ്പോൾ, ഒരു ത്രികോണത്തിലെ ഏതെങ്കിലും രണ്ട് കോണുകൾ മറ്റൊരു ത്രികോണത്തിലെ രണ്ട് കോണുകൾക്ക് തുല്യമാണെങ്കിൽ, മൂന്നാമത്തെ കോണുകളും തുല്യമാണ്.

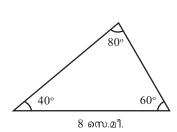
ഏതെങ്കിലും ഒരു വശവും കൂടി തുല്യമായാലോ? മറ്റു രണ്ട് വശങ്ങൾ തുല്യമാകുമോ?

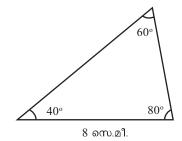
ഇതുപോലെ രണ്ടു ത്രികോണങ്ങൾ വരച്ചു നോക്കു:



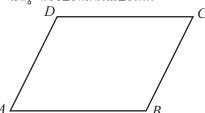


ഈ ത്രികോണങ്ങളുടെ മൂന്നാമത്തെ കോണുകൾ എന്താണ്?

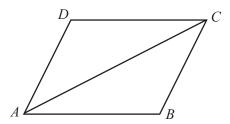




ഒരു വശവും എല്ലാ കോണുകളും തുല്യമായിട്ടും ത്രികോ ണങ്ങളുടെ മറ്റു രണ്ടു വശങ്ങൾ തുല്യമല്ലാത്തത് എന്തുകൊ ണ്ടാണ്? മുകളിൽ പറഞ്ഞ പൊതുതത്വത്തിന്റെ ഒരു ഉപയോഗം നോക്കാം. ചിത്ര ത്തിലെ ABCD ഒരു സാമാന്തരികമാണ്:



അതായത്, ഇതിലെ AB, CD എന്നീ എതിർവശങ്ങളും, AD, BC എന്നീ എതിർവശങ്ങളും സമാന്തര വരകളാണ്. AC എന്ന വികർണം വരച്ചാൽ ഇതിനെ രണ്ടു ത്രികോണ ങ്ങളായി ഭാഗിക്കാം:



 ΔABC , ΔADC ഇവ രണ്ടിലും, ഒരു വശം AC തന്നെയാണ്. അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകൾ തുല്യമാണോ?

AB, CD എന്നീ സമാന്തരവരകൾ, AC എന്ന വരയുമായി ചേർന്നുണ്ടാകുന്ന മറുകോണുകളാണ് $\angle CAB$ യും $\angle DCA$ യും.

അതിനാൽ

$$\angle CAB = \angle DCA$$

ഇതുപോലെ

$$\angle ACB = \angle DAC$$

എന്നും കാണാം. (എങ്ങനെ?)

അപ്പോൾ ΔABC , ΔADC ഇവയിൽ AC എന്ന വശവും, അതിന്റെ രണ്ടറ്റത്തുള്ള കോണുകളും തുല്യമാണ്. അതി നാൽ ഈ ത്രികോണങ്ങളിലെ തുല്യമായ കോണുകൾക്കെ തിരെയുള്ള വശങ്ങളും തുല്യമാണ്. അതായത്,

$$AB = CD$$
 $AD = BC$

ഇത് ഏതു സാമാന്തരികത്തിനും ശരിയാണല്ലോ.

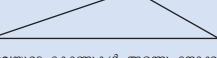
ഏതു സാമാന്തരികത്തിലും എതിർവശങ്ങൾ തുല്യമാണ്.

ശരിയല്ലാത്ത പൊരുത്തം

ഒരു ത്രികോണത്തിന് മൂന്നു വശങ്ങൾ, മൂന്നു കോണുകൾ എന്നിങ്ങനെ ആകെ ആറ് അളവുകളാണല്ലോ ഉള്ളത്. രണ്ടു ത്രികോണങ്ങളിൽ ഈ അളവുകളിലെ നിശ്ചിതമായ മൂന്നെണ്ണം (മൂന്ന് വശങ്ങൾ, രണ്ടു വശങ്ങളും അവ ചേരുന്ന കോണും ഒരു വശവും അതിന്റെ രണ്ടറ്റത്തുമുള്ള കോണുകളും) തുല്യമായാൽ ഈ ത്രികോ ണങ്ങൾ തുല്യമാകുമെന്ന് (അതായത് ബാക്കി മൂന്ന് അളവുകളും തുല്യമായി രിക്കുമെന്ന്) കണ്ടു.

ഇനി ഒരു കടലാസിൽ വശങ്ങൾ 4, 6, 9 സെന്റിമീറ്റർ ആയ ഒരു ത്രികോണം വര യ്ക്കൂ.

അടുത്തതായി 6, 9, 13.5 സെന്റിമീറ്റർ ആയ മറ്റൊരു ത്രികോണവും.

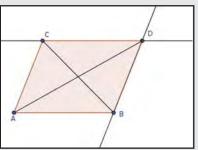


ഇവയുടെ കോണുകൾ അളന്നു നോക്കൂ. രണ്ട് ത്രികോണത്തിലെയും കോണുകൾ തുല്യമല്ലേ? (വെട്ടിയെടുത്ത് കോണുകളോ രോന്നും ചേർത്തുവെച്ച് നോക്കിയാലും മതി).

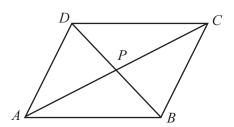
അതായത്, ഈ ത്രികോണങ്ങളിൽ മൂന്ന് കോണുകളും, രണ്ടു വശങ്ങളുമായി അഞ്ച് അളവുകൾ തുല്യമാണ്. പക്ഷേ ഇവ സർവ സമമല്ലല്ലോ. സാമാന്തരികത്തിലെ DB എന്ന വികർണം കൂടി വരയ്ക്കാം. വികർണ ങ്ങൾ മുറിച്ചുകടക്കുന്ന ബിന്ദുവിനെ P എന്നു വിളിക്കാം.

സാമാന്തരികം

AB, AC എന്നീ വരകൾ വരയ്ക്കുക. Parallel Line എടുത്ത് AC യ്ക്ക് സമാന്ത രമായി B യിൽ കൂടിയും AB യ്ക്ക് സമാന്തരമായി C യിൽ കൂടിയും വരകൾ വര യ്ക്കുക. ഇവ മുറിച്ചു കടക്കുന്ന ബിന്ദു D അടയാളപ്പെടുത്തുക. സാമാന്തരികം ABDC വരച്ച് വികർണങ്ങളും വരയ്ക്കുക.



വികർണങ്ങൾ പരസ്പരം സമഭാഗം ചെയ്യുന്നുണ്ടോ എന്ന് നോക്കൂ. (Mid Point or Center എടുത്ത് വികർണത്തിൽ ക്ലിക്ക് ചെയ്താൽ അതിന്റെ മധ്യബിന്ദു ലഭിക്കും). A, B, C എന്നീ ബിന്ദുക്കളുടെ സ്ഥാനം മാറ്റി വ്യത്യസ്ത സാമാന്തരികങ്ങൾ വരയ്ക്കാം.



 ΔAPB , ΔCPD ഇവ നോക്കൂ. ഇവയിലെ AB, CD എന്നീ വശങ്ങൾ തുല്യമാണെന്നു കണ്ടുകഴിഞ്ഞു. അവയുടെ രണ്ട റ്റത്തുള്ള കോണുകളോ?

 $\angle CAB$, $\angle DCA$ ഇവ തുല്യമാണെന്നു കണ്ടു.

അതായത്, $\angle PAB = \angle PCD$

 $\angle PBA$, $\angle PDC$ എന്നിവ തുല്യമാണോ?

 $AB,\ CD$ എന്നീ സമാന്തരവരകളും BD എന്ന വരയും ചേർന്നുണ്ടാകുന്ന മറുകോണുകളാണല്ലോ ഇവ. അതിനാൽ ഇവയും തുല്യമാണ്.

അപ്പോൾ ΔAPB , ΔCPD ഇവയിൽ AB, CD എന്നീ വശങ്ങൾ തുല്യമാണ്; അവയുടെ രണ്ടറ്റത്തുള്ള കോണുകളും തുല്യമാണ്. അതിനാൽ, അവയിലെ തുല്യമായ കോണു കൾക്കെതിരെയുള്ള വശങ്ങളും തുല്യമാണ്.

അതായത്, AP = CP BP = DP

മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ, AC, BD എന്നീ രണ്ടു വികർണങ്ങളുടെയും മധ്യബിന്ദുവാണ് P.

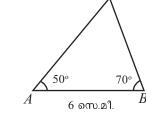
ഏതു സാമാന്തരികത്തിലും വികർണങ്ങൾ മുറിച്ചു കടക്കുന്ന ബിന്ദു, രണ്ടു വികർണങ്ങളുടെയും മധ്യബിന്ദുവാണ്.

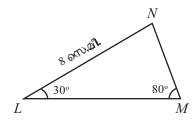
ഇക്കാര്യം ഇങ്ങനെയും പറയാം:

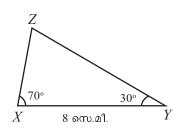
ഏതു സാമാന്തരികത്തിലും വികർണങ്ങൾ പരസ്പരം സമ ഭാഗം ചെയ്യുന്നു. (1) ചുവടെയുള്ള ഓരോ ജോടി ചിത്രങ്ങളിലും, ഒന്നാം ത്രികോ ണത്തിലെ വശങ്ങൾക്ക് തുല്യമായ വശങ്ങൾ രണ്ടാം ത്രികോണത്തിൽ നിന്ന് കണ്ടുപിടിച്ച് എഴുതുക.

i)

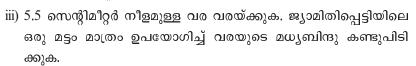
ii)

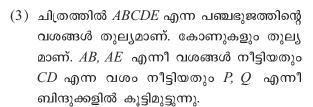


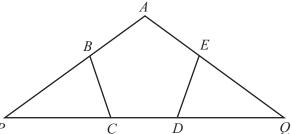




- (2) ചിത്രത്തിൽ, AB എന്ന വരയുടെ രണ്ടറ്റത്തും സമാന്തരവും തുല്യവുമായ രണ്ടു വരകൾ AP, BQ വരച്ചിരിക്കുന്നു. PQ, AB ഇവ മുറിച്ചുകട ക്കുന്ന ബിന്ദുവാണ് M.
 - ΔAMP യുടെ മൂന്നു വശങ്ങളും ΔBMQ ന്റെ വശങ്ങൾക്ക് തുല്യമാണോ? എന്തുകൊണ്ട്?
 - ii) AB എന്ന വരയിൽ M എന്ന ബിന്ദുവിന്റെ സ്ഥാനത്തിന്റെ സവിശേഷത എന്താണ്?







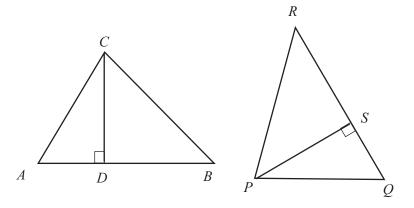
- i) ΔBPC യുടെ വശങ്ങൾ ΔEQD യുടെ വശ Pങ്ങൾക്ക് തുല്യമാണോ? എന്തുകൊണ്ട്?
- ii) ΔAPQ യുടെ AP, AQ എന്നീ വശങ്ങൾ തുല്യമാണോ? എന്തുകൊണ്ട്?

ഗണിതം

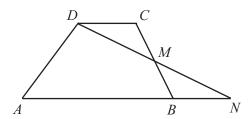
(4) ചിത്രത്തിലെ ΔABC , ΔPQR ഇവയിൽ

$$AB = QR$$
 $BC = RP$ $CA = PQ$

എന്നിങ്ങനെയാണ്.



- i) CD, PS ഇവ തുല്യമാണോ? എന്തുകൊണ്ട്?
- ii) ΔABC , ΔPQR ഇവയുടെ പരപ്പളവുകൾ തമ്മിൽ എന്താണു ബന്ധം?
- (5) ചിത്രത്തിലെ ABCD എന്ന ചതുർഭുജത്തിൽ AB, CD ഇവ സമാന്തര മാണ്; BC എന്ന വശത്തിന്റെ മധ്യബിന്ദുവാണ് M.



DM, AB എന്നീ വരകൾ നീട്ടിയത് N എന്ന ബിന്ദുവിൽ കൂട്ടിമുട്ടുന്നു.

- i) ΔDCM , ΔBMN എന്നിവയുടെ പരപ്പളവുകൾ തുല്യമാണോ? എന്തുകൊണ്ട്?
- ii) *ABCD* എന്ന ചതുർഭുജത്തിന്റെയും, *ADN* എന്ന ത്രികോണത്തി ന്റെയും പരപ്പളവുകൾ തമ്മിൽ എന്താണു ബന്ധം?
- (6) ഒരു ചതുരത്തിന്റെ രണ്ട് വികർണങ്ങൾ തുല്യമാണോ? എന്തുകൊണ്ട്?

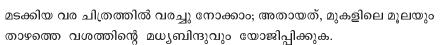
സമപാർശ്വത്രികോണങ്ങൾ

ഈ ത്രികോണം നോക്കൂ.

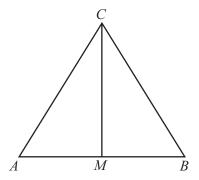
ഇതിന്റെ രണ്ട് വശങ്ങൾ തുല്യമാണ്. ചുവടെ യുള്ള കോണുകളും തുല്യമാണെന്നു തോന്നു ന്നില്ലേ?

ഇത്തരമൊരു ത്രികോണം വെട്ടിയെടുത്ത്, തുല്യ വശങ്ങൾ ചേർന്നിരിക്കുന്ന വിധം നടുവിലൂടെ മടക്കിനോക്കൂ. ചുവടെയുള്ള കോണുകൾ കൃത്യ മായി ചേർന്നിരിക്കുന്നില്ലേ?

കോണുകൾ തുല്യമാകാൻ എന്താണ് കാരണം?







ഇപ്പോൾ AMC, BMC എന്നീ രണ്ടു ത്രികോണങ്ങളായി. ഇവയിൽ AC, BC എന്നീ വശങ്ങൾ തുല്യമാണ്.

M എന്നത്, AB യുടെ മധ്യബിന്ദു ആയതിനാൽ AM, BM ഇവയും തുല്യമാണ്. രണ്ടിലും മൂന്നാമത്തെ വശം CM തന്നെയാണ്.

രണ്ടു ത്രികോണങ്ങളുടെയും വശങ്ങളെല്ലാം തുല്യമായതിനാൽ, തുല്യ മായ വശങ്ങൾക്കെതിരെയുള്ള കോണുകളും തുല്യമാണ്.

അപ്പോൾ രണ്ടു ത്രികോണങ്ങളിലും CM എന്ന വശത്തിനെതിരെയുള്ള $\angle A$, $\angle B$ ഇവ തുല്യമാണ്.

ഇത് ഒരു പൊതുതത്വമായി എഴുതാം:

ഒരു ത്രികോണത്തിന്റെ രണ്ടു വശങ്ങൾ തുല്യമാണെങ്കിൽ, ഈ വശങ്ങൾക്കെതിരെയുള്ള കോണുകളും തുല്യമാണ്.

ഇവിടെ മറ്റൊരു കാര്യവുംകൂടി കാണാം. ചിത്രത്തിലെ ΔAMC , ΔBMC ഇവയിലെ തുല്യവശങ്ങളായ AC, BC ഇവയ്ക്കെതിരെയുള്ള $\angle AMC$, $\angle BMC$ ഇവയും തുല്യമാണ്.

 $\min=3$, $\max=15$ ആകത്തക്കവിധം സ്റ്റൈഡർ a നിർമിക്കുക. നീളം 6 ആയി AB എന്ന വര വരയ്ക്കുക. A, B ഇവ കേന്ദ്രമായും ആരം a ആയും രണ്ടു വൃത്തങ്ങൾ വരച്ച് അവ കൂട്ടിമുടുന്ന ബിന്ദു C അടയാളപ്പെടുത്തുക. ΔABC വരയ്ക്കുക. ഇനി വൃത്തങ്ങൾ മറച്ചു വയ്ക്കാം. a യുടെ വില മാറുന്നതനുസരിച്ച് വൃത്യസ്ത ത്രികോണങ്ങൾ കിട്ടുന്നില്ലേ? ഈ ത്രികോണങ്ങൾ കിട്ടുന്നില്ലേ? ഈ ത്രികോണങ്ങളുടെയെല്ലാം രണ്ടു വശങ്ങൾ തുല്യമാണ്. കോണുകളോ? a=6 ആകുമ്പോൾ കോണുകൾ എത്രയാണ്?

ഈ രണ്ടു കോണുകൾ CM എന്ന വരയുടെ ഇരുവശത്തുമുള്ള കോണു കളായതിനാൽ, അവയുടെ തുക 180° ആണ്.

അപ്പോൾ ഈ കോണുകളോരോന്നും 90° ആണ്.

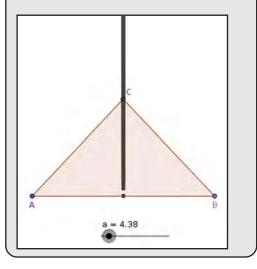
അതായത്, *CM* എന്ന വര *AB* യ്ക്ക് ലംബമാണ്.

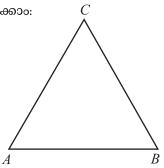
ഇനി വേറൊരു ചിന്ത: ആദ്യം പറഞ്ഞ പൊതുതത്വം മറിച്ചു പറഞ്ഞാൽ ശരിയാകുമോ?

അതായത്, ഒരു ത്രികോണത്തിന്റെ രണ്ടു കോണുകൾ തുല്യമാണെങ്കിൽ, അവയ്ക്ക് എതിരെയുള്ള വശങ്ങൾ തുല്യമാണോ?

ഒരു ചിത്രം വരച്ചു നോക്കാം:

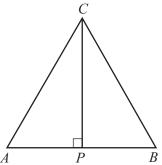
മുൻ പേജിലെ ജിയോജിബ്ര പ്രവർത്തന ത്തിൽ C എന്ന ബിന്ദുവിന് Trace On നൽകുക. C യുടെ സഞ്ചാരപാത ശ്രദ്ധിക്കൂ.





 ΔABC യിൽ $\angle A=\angle B$ ആണ്. AC=BC ആണോ എന്നാണ് ചോദ്യം.

മുമ്പു ചെയ്തതുപോലെ ΔABC യെ രണ്ടു ത്രികോണങ്ങ ളായി ഭാഗിക്കാം. ഇവിടെ C യും AB യുടെ മധ്യബിന്ദുവും യോജിപ്പിക്കുന്നതിനു പകരം, C യിൽ നിന്ന് AB യിലേക്ക് ലംബം വരയ്ക്കുന്നതാണ് സൗകര്യം.



 ΔAPC , ΔPBC ഇവ രണ്ടിലെയും ഒരു വശമാണ് CP. അതിന്റെ P എന്ന അറ്റത്തെ കോണുകൾ മട്ടവുമാണ്.

മറ്റേ അറ്റത്തുള്ള കോണുകളോ?

 $\angle A = \angle B$ എന്നറിയാം.

 $\angle APC = 90^{\circ} = \angle BPC$ എന്നും അറിയാം.

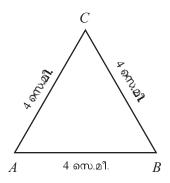
അപ്പോൾ മൂന്നാമത്തെ കോണുകളായ $\angle ACP$, $\angle BCP$ ഇവയും തുല്യമാകണമല്ലോ. (എന്തുകൊണ്ട്?)

അങ്ങനെ രണ്ടു ത്രികോണങ്ങളിലും ഒരു വശവും അവയുടെ രണ്ടറ്റ ത്തുള്ള കോണുകളും തുല്യമാണെന്നു കിട്ടി. അപ്പോൾ തുല്യമായ കോണുകൾക്കെതിരെയുള്ള വശങ്ങളും തുല്യമാണല്ലോ. അതിനാൽ AC, BC ഇവ തുല്യമാണെന്നു വരുന്നു.

ഒരു ത്രികോണത്തിന്റെ രണ്ടു കോണുകൾ തുല്യമാണെ ങ്കിൽ, ഈ കോണുകളുടെ എതിരെയുള്ള വശങ്ങളും തുല്യ മാണ്.

രണ്ടു വശങ്ങൾ തുല്യമായ ത്രികോണത്തെ സമപാർശ്വ ത്രികോണം (isosceles triangle) എന്നാണ് പറയുന്നത്. ഇപ്പോൾ കണ്ട തത്വമനുസരിച്ച്, രണ്ടു കോണുകൾ തുല്യ മായ ത്രികോണങ്ങളും സമപാർശ്വത്രികോണങ്ങളാണ്.

ഈ ത്രികോണം നോക്കൂ:



മൂന്നു വശങ്ങളും തുല്യമായ ഇത്തരമൊരു ത്രികോണത്തെ സമഭുജത്രികോണം എന്നാണല്ലോ പറയുന്നത്. സമപാർശ്വ ത്രികോണങ്ങളുടെ കൂട്ടത്തിലെ ഒരു സവിശേഷ ഇനമാ ണ് സമഭുജത്രികോണം (equilateral triangle).

ചിത്രത്തിലെ ΔABC യിൽ AC=BC ആയതിനാൽ, ഈ വശങ്ങൾക്കെതിരെയുള്ള $\angle B$, $\angle A$ ഇവ തുല്യമാണ്.

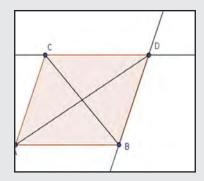
കൂടാതെ AB=AC ആയതിനാൽ, അവയ്ക്കെതിരെയുള്ള $\angle C$, $\angle B$ ഇവയും തുല്യമാണ്. അപ്പോൾ ഈ ത്രികോണത്തിലെ മൂന്നു കോണുകളും തുല്യ മാണ്. കോണുകളുടെ തുക 180° ആയതിനാൽ, ഓരോ കോണും $180^\circ\div 3=60^\circ$ എന്നും കാണാം.

ഏതൊരു സമഭുജത്രികോണത്തിലും, കോണുകളെല്ലാം 60° ആണ്.

മറിച്ച്, ഒരു ത്രികോണത്തിന്റെ കോണുകളെല്ലാം 60° ആണെങ്കിൽ, അതൊരു സമഭുജത്രികോണമാണ്. (വിശദീകരിക്കാമോ?)

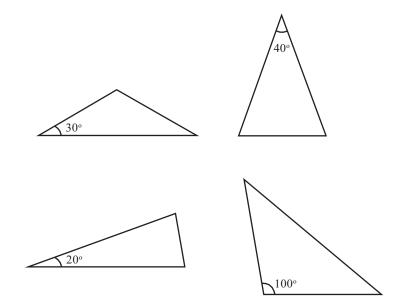
Slider എടുത്ത് അതിൽ Angle ക്ലിക്ക് ചെയ്താൽ α എന്ന് കിട്ടും. $\min=0^\circ$, $\max=90^\circ$ എന്നെടുക്കുക.

നീളം 6 ആയി AB എന്ന വര വരയ്ക്കുക. $\angle A = \angle B = \alpha$ ആകത്തക്കവിധം വരകൾ വരച്ച് കൂട്ടിമുട്ടുന്ന ബിന്ദു C അടയാളപ്പെടു ത്തുക. ΔABC വരയ്ക്കുക.

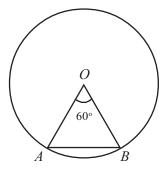


ഇനി A'C, B'C എന്നീ വരകളും A', B' എന്നീ ബിന്ദുക്കളും മറച്ചു വയ്ക്കാം. α മാറുന്നതനുസരിച്ച് ത്രികോണത്തിന്റെ വശങ്ങൾ മാറുന്നത് നോക്കു. $\alpha=60^\circ$ ആകുമ്പോൾ ത്രികോണത്തിന്റെ പ്രത്യേകത എന്താണ്? 45° ആകുമ്പോഴോ?

(1) ചുവടെ കുറേ സമപാർശ്വത്രികോണങ്ങൾ വരച്ചിട്ടുണ്ട്. ഓരോന്നിലും ഒരു കോൺ എഴുതിയിട്ടുണ്ട്. മറ്റു കോണുകൾ കണ്ടുപിടിക്കുക.



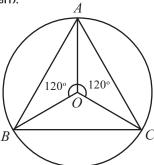
- (2) ഒരു സമപാർശ്വത്രികോണത്തിന്റെ ഒരു കോൺ 120° ആണ്. മറ്റു രണ്ടു കോണുകൾ എന്തൊക്കെയാണ്?
- (3) ഒരു സമപാർശ്വത്രികോണത്തിന്റെ ഒരു കോൺ 90° ആണ്. അതിന്റെ മറ്റു രണ്ടു കോണുകൾ എന്തൊക്കെയാണ്?
- (4) ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും, A,B എന്നിവ വൃത്തത്തിലെ ബിന്ദു ക്കളുമാണ്.



 $\angle A$, $\angle B$ ഇവ കണക്കാക്കുക.

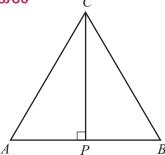
5. ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും, A, B, C എന്നിവ വൃത്തത്തിലെ

ബിന്ദുക്കളുമാണ്.



 ΔABC യുടെ കോണുകൾ എന്തൊക്കെയാണ്?

സമഭാജികൾ



ഈ ചിത്രം നോക്കൂ:

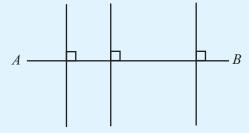
 ΔABC യിൽ AC, BC ഇവ തുല്യമാണ്; C യിൽ നിന്ന് AB യിലേക്കുള്ള ലംബമാണ് CP

ഇതിൽ ΔAPC , ΔBPC ഇവയുടെ വശങ്ങളും, കോണുകളും തുല്യമാണെന്നു കണ്ടു. അപ്പോൾ AP യും BP യും തുല്യ മാണ്. അതായത്, AB യെ CP സമഭാഗം ചെയ്യുന്നു.

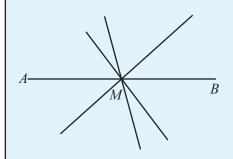
കൂടാതെ $\angle ACP$, $\angle BCP$ ഇവയും തുല്യമാണ്; അപ്പോൾ CP എന്ന വര, $\angle C$ യെ സമഭാഗം ചെയ്യുന്നു എന്നു പറയാം.

ലംബസമഭാജി

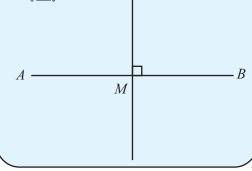
ഒരു വരയ്ക്ക് അനേകം ലംബങ്ങൾ വര യ്ക്കാം.



വരയ്ക്ക് അനേകം സമഭാജികളും വരയ്ക്കാം.



ലംബവും സമഭാജിയുമായി ഒരു വര മാത്ര മേയുള്ളൂ.



ഒരു സമപാർശ്വത്രികോണത്തിൽ, തുല്യവശങ്ങൾ ചേരുന്ന മൂലയിൽ നിന്ന് എതിർവശത്തേയ്ക്കുള്ള ലംബം, ഈ മൂല യിലുള്ള കോണിനേയും എതിർവശത്തെയും സമഭാഗം ചെയ്യുന്നു.

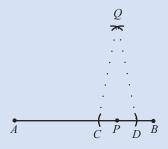
ഒരു വരയെയോ കോണിനെയോ സമഭാഗം ചെയ്യുന്ന വരയ്ക്ക് സമ ഭാജി (bisector) എന്നാണ് പറയുന്നത്. അപ്പോൾ മുകളിലെ ചിത്രത്തിൽ CP എന്ന വര AB യുടെയും $\angle C$ യുടെയും സമഭാജിയാണ്. ഇത് AB യ്ക്ക് ലംബവും കൂടി ആയതിനാൽ ഇതിനെ AB യുടെ ലംബസമഭാജി (perpendicular bisector) എന്നു വിളിക്കാം.

അകത്തുനിന്നൊരു ലംബം

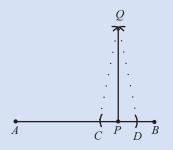
ഒരു വരയിലെ നിശ്ചിതസ്ഥാനത്തുനിന്നു ലംബം വരയ്ക്കുന്നത് എങ്ങനെ?

ആദ്യം P യിൽ നിന്ന് തുല്യ അകലത്തിൽ AB യിൽത്തന്നെ രണ്ടു ബിന്ദുക്കൾ $C,\,D$ അടയാളപ്പെടുത്തുക.

ഇനി C യിൽനിന്നും D യിൽ നിന്നും തുല്യ അകലത്തിൽ Q അടയാളപ്പെടുത്തുക



 ΔCQD സമ പാർശ്വത്രി കോണമാണല്ലോ. അതിനാൽ QP എന്ന വര CD യ്ക്ക് ലംബ മാണ്. CD എന്ന വര AB എന്ന വരയുടെ ഭാഗമായതിനാൽ QP എന്ന വര AB യ്ക്ക് ലംബമാണ്.



ഇത് മറ്റൊരു തരത്തിലും പറയാം: AB യുടെ ലംബസമ ഭാജി C യിലൂടെ കടന്നു പോകും.

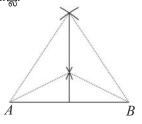
AB യ്ക്ക് മേൽ വേറെയും സമപാർശ്വത്രികോണങ്ങൾ വര യ്ക്കാമല്ലോ.

AB യുടെ ലംബസമഭാജി, ഈ ത്രികോണങ്ങളുടെയെല്ലാം മുക ളിലെ മൂലയിലൂടെ കടന്നുപോ കും.

അതിനാൽ AB യുടെ ലംബ \vdots സമഭാജി വരയ്ക്കാൻ, ഈ \vdots ത്രികോണങ്ങളുടെ A P യെല്ലാം മുകളിലെ മൂല കൾ യോജിപ്പിച്ച് AB യിലേക്ക് നീട്ടിയാൽ മതി.

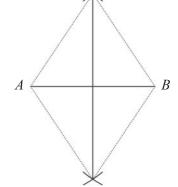
ഒരു വര വരയ്ക്കാൻ രണ്ടു ബിന്ദുക്കൾ പോരേ?

അപ്പോൾ ലംബസമഭാജി വരയ്ക്കാൻ ഇത്തരം രണ്ടു ത്രികോണങ്ങൾ മതി. ത്രികോണങ്ങൾ മുഴുവനായി വര യ്ക്കണമെന്നുമില്ല.



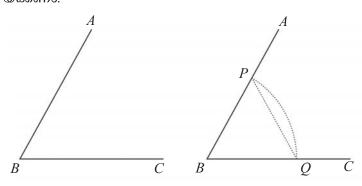
അവയുടെ മുകളിലെ മൂലകൾ അടയാളപ്പെടുത്തിയാലും മതി; അതായത്, A യിൽ നിന്നും B യിൽ നിന്നും തുല്യ അകലത്തിൽ രണ്ടു ബിന്ദുക്കൾ.

ചുവട്ടിലേയ്ക്ക് നീട്ടി വരയ്ക്കണമെങ്കിൽ, ഇങ്ങനെയും ആവാം:



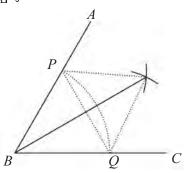
ഒരു കോണിന്റെ സമഭാജി വരയ്ക്കാനും ഇപ്പോൾ കണ്ട തത്വം ഉപയോ ഗിക്കാം.

ആദ്യം ഈ കോൺ ഉൾപ്പെടുന്ന ഒരു സമപാർശ്വത്രികോണം വര യ്ക്കണം.



ഇനി ΔPBQ യിലെ PQ എന്ന വശത്തിന്റെ ലംബസമഭാജി വരച്ചാൽ മതിയല്ലോ.

ഇവിടെ ഒരു സൗകര്യമുണ്ട്. നമുക്കു വരയ്ക്കേണ്ട ലംബ സമഭാജി B യിൽക്കൂടി കടന്നുപോകുമല്ലോ. (എന്തു കൊണ്ട്?) അപ്പോൾ ഈ സമഭാജിയിലെ ഒരു ബിന്ദു കൂടി അടയാളപ്പെടുത്തിയാൽ മതി.



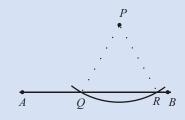
- (1) 6.5 സെന്റിമീറ്റർ നീളമുള്ള ഒരു വര വരച്ച് അതിന് ലംബസമഭാജി വരയ്ക്കുക.
- (2) വശങ്ങളുടെയെല്ലാം നീളം 3.75 സെന്റിമീറ്റർ ആയ ഒരു സമചതുരം വരയ്ക്കുക.
- (3) 75° അളവുള്ള ഒരു കോൺ വരച്ച് അതിന്റെ സമഭാജി വരയ്ക്കുക.
- (4) ആരം 2.25 സെന്റിമീറ്റർ ആയ ഒരു വൃത്തം വരയ്ക്കുക.
- (5) AB=6 സെന്റിമീറ്റർ, $\angle A=22\frac{1}{2}^{\circ}$, $\angle B=67\frac{1}{2}^{\circ}$ എന്നീ അളവുകളിൽ ΔABC വരയ്ക്കുക.

പുറമേ നിന്നൊരു ലംബം

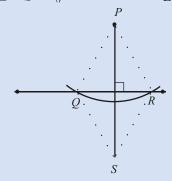
ഒരു വരയിലെ ബിന്ദുവിൽ നിന്ന് കോമ്പസ് ഉപയോഗിച്ച് ലംബം വരയ്ക്കാം. വരയിലല്ലാത്ത ബിന്ദുവിൽനിന്ന് വരയിലേക്ക് ലംബം വരയ്ക്കു ന്നതെങ്ങനെ?

അതിന് P മുകളിലത്തെ മൂലയായും, താഴത്തെ വശം AB യിലും ആകത്തക്കവണ്ണം ഒരു സമ പാർശ്വത്രികോണം വരയ്ക്കണം. അതിന് P യിൽ നിന്ന് ഒരേ അകലത്തിൽ രണ്ട് ബിന്ദുക്കൾ AB യിൽ അടയാളപ്പെടുത്തിയാൽ മതിയല്ലോ.

P കേന്ദ്രമായി ഒരു വൃത്തം വരച്ച് AB യെ Q, \mathbf{R} എന്നീ ബിന്ദുക്കളിൽ ഖണ്ഡിക്കുക.



ഇനി QR ന്റെ ലംബസമഭാജി വരച്ചാൽ മതി.



- (6) ഒരു ത്രികോണം വരച്ച്, അതിന്റെ വശങ്ങളുടെയെല്ലാം ലംബസമഭാ ജികൾ വരയ്ക്കുക. ഇവയെല്ലാം മുറിച്ചു കടക്കുന്നത് ഒരേ ബിന്ദുവി ലാണോ?
- (7) ഒരു ത്രികോണം വരച്ച്, അതിന്റെ കോണുകളുടെയെല്ലാം സമഭാജി കൾ വരയ്ക്കുക. ഇവയെല്ലാം മുറിച്ചു കടക്കുന്നത് ഒരു ബിന്ദുവി ലാണോ?
- (8) ഒരു ചതുർഭുജത്തിന്റെ രണ്ടു ജോടി എതിർവശങ്ങളും തുല്യമാണെ ങ്കിൽ, അതൊരു സാമാന്തരികമാണെന്നു തെളിയിക്കുക.

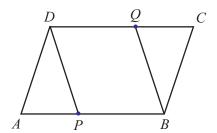
കയറും കണക്കും

പ്രാചീന ജ്യാമിതിയുടെ പ്രാമാണിക ഗ്രന്ഥമായ എലമെന്റ്സിനെക്കുറിച്ച് കേട്ടിട്ടുണ്ടല്ലോ. ഇതിൽ വരകളും വൃത്തങ്ങളും ഉപയോഗിച്ച് വരയ്ക്കാവുന്ന രൂപങ്ങൾ മാത്രമേ യുക്ലിഡ് പരിഗണിക്കു ന്നുള്ളു. മറ്റൊരു രീതിയിൽപ്പറഞ്ഞാൽ നീളങ്ങളൊന്നും അടയാളപ്പെടുത്താത്ത വളവില്ലാത്ത ഒരു വടിയും (straightedge) കോമ്പസും കൊണ്ട് വരയ്ക്കാ വുന്ന രൂപങ്ങൾ മാത്രം. എന്തുകൊണ്ടാണിങ്ങനെ? പണ്ടുകാലത്ത് നീളമളക്കാനും, വരയ്ക്കാനുമെല്ലാം ചരടോ കയറോ ആണ് ഉപയോഗിച്ചിരുന്നത്. കയർ ഉപ യോഗിച്ച് വരയ്ക്കാവുന്നത് വരയും വട്ട വുമാണ്. രണ്ടു കുറ്റികൾക്കിടയിൽ കയർ വലിച്ചു കെട്ടിയാൽ വരയായി. ഒരു കുറ്റി ഇളക്കി മറ്റേ കുറ്റിയ്ക്കു ചുറ്റും കറക്കിയാൽ വട്ടവും. വിവിധ രൂപങ്ങൾ വരയ്ക്കാനുള്ള ഉപകരണങ്ങൾ നിർമിക്കാൻ കഴിയുന്ന ഇന്ന് ഇത്തരം നിർമിതികൾക്ക് ചരിത്രപരവും

സൈദ്ധാന്തികവുമായ

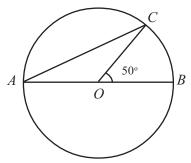
പ്രാധാന്യമേയുള്ളു

(9) ABCD എന്ന സാമാന്തരികത്തിൽ AP = CQ ആണ്.



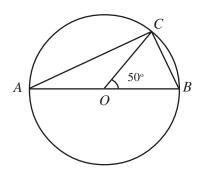
PBQD എന്ന ചതുർഭുജം, സാമാന്തരികമാണെന്നു തെളിയിക്കുക.

- (10) ഒരു സാമാന്തരികത്തിന്റെ വശങ്ങളെല്ലാം തുല്യ മാണെങ്കിൽ, അതിന്റെ ഓരോ വികർണവും മറ്റേ വികർണത്തിന്റെ ലംബസമഭാജിയാണെന്ന് തെളിയിക്കുക.
- (11) ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും AB ഒരു വ്യാസ വുമാണ്. C വൃത്തത്തിലെ ബിന്ദുവാണ്.



- i) $\angle CAB$ കണക്കാക്കുക.
- ii) $\angle COB$ യുടെ അളവ് മറ്റേതെങ്കിലും സംഖൃ യായി ഈ ചിത്രം മാറ്റി വരയ്ക്കുക. ആ ചിത്ര ത്തിൽ $\angle CAB$ കണക്കാക്കുക.

(12) ചിത്രത്തിൽ O വൃത്തകേന്ദ്രവും AB ഒരു വ്യാസവുമാണ്. C വൃത്തത്തിലെ ബിന്ദുവാണ്.



- i) $\angle ACB$ കണക്കാക്കുക.
- ii) $\angle COB$ യുടെ അളവ് മറ്റേതെങ്കിലും സംഖ്യയായി ഈ ചിത്രം മാറ്റി വരയ്ക്കുക. ആ ചിത്രത്തിൽ $\angle ACB$ കണക്കാക്കുക.

ഏതു വൃത്തത്തിലെയും ഒരു വ്യാസത്തിന്റെ രണ്ടറ്റങ്ങൾ, വൃത്തത്തിലെ മറ്റൊരു ബിന്ദുവുമായി യോജിപ്പിച്ചാലുണ്ടാ കുന്ന കോൺ എന്താണ്?

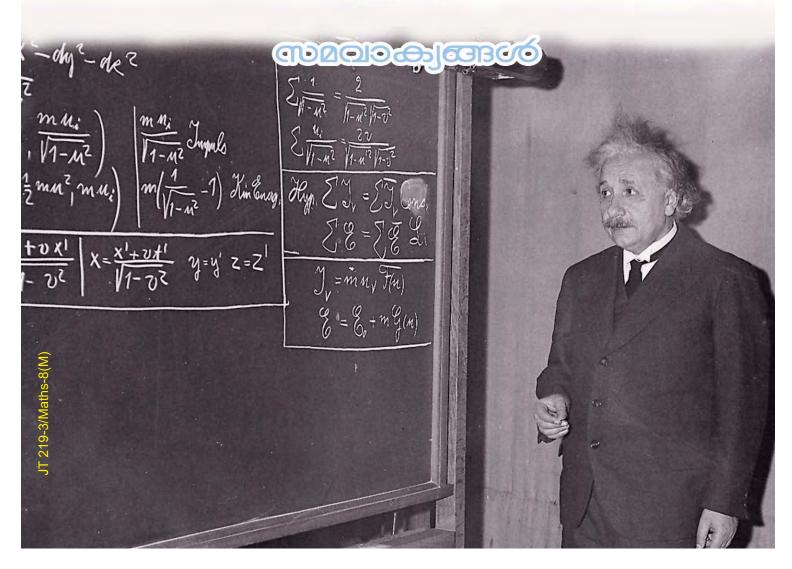
- (13) ഒരു കോൺ 50° യും ഒരു വശം 7 സെന്റിമീറ്ററുമായ എത്ര വൃത്യസ്ത സമപാർശ്വത്രികോണങ്ങൾ വരയ്ക്കാം?
- $(14)\ AB = 7\ \, {
 m cm}$ ന്റിമീറ്റർ, $\angle A = 67 {1\over 2}^{\circ}$, $\angle B = 15^{\circ}$ ആയ ത്രികോണം കോൺമാപിനി ഉപയോഗിക്കാതെ വരയ്ക്കുക.

ഒരു ചതുർഭുജത്തിന്റെ നാലു വശങ്ങളും മറ്റൊരു ചതുർഭുജത്തിന്റെ നാലു വശങ്ങൾക്ക് തുല്യമാണെങ്കിൽ, രണ്ടു ചതുർഭുജങ്ങളിലെയും കോണുകളും തുല്യമാകണമെന്നുണ്ടോ?

ചിത്രങ്ങൾ വരച്ച് പരിശോധിക്കുക. ചുതർഭുജങ്ങളിലെ നാലു വശ ങ്ങൾക്ക് പുറമെ, മറ്റേതെങ്കിലും നീളങ്ങൾ തുല്യമാണെങ്കിൽ കോണുകൾ തുല്യമാകുമോ?

തിരിഞ്ഞുനോക്കുമ്പോൾ

പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
രണ്ടു ത്രികോണങ്ങളിലെ ചില അളവുകൾ തുല്യമാണെങ്കിൽ, മറ്റളവുകളും തുല്യമാ കുന്ന വിവിധ സാഹചര്യങ്ങൾ വിശദീകരി ക്കുന്നു.			
 ത്രികോണങ്ങളെ കുറിച്ചുള്ള ഇത്തരം തത്വ ങ്ങളിൽനിന്ന് മറ്റു ചില ജ്യാമീതിയ തത്വങ്ങൾ രൂപീകരിക്കുന്നു. 			
 വരയുടെ ലംബസമഭാജിയും കോണിന്റെ സമ ഭാജിയും വരയ്ക്കുന്നതിനുള്ള വിവിധ മാർഗ ങ്ങൾ വിശദീകരിക്കുന്നു. 			
വരയിലെ ബിന്ദുവിൽനിന്ന് ലംബം വരയ്ക്കു വാനും വരയ്ക്ക് പുറത്തുള്ള ബിന്ദുവിൽ നിന്ന് വരയിലേക്ക് ലംബം വരയ്ക്കാനുമുള്ള മാർഗ ങ്ങൾ വിശദീകരിക്കുന്നു.			



കൂട്ടലും കുറയ്ക്കലും

സുഹറ പണപ്പെട്ടി തുറന്ന് എണ്ണിനോക്കുകയാണ്. "എത്ര രൂപയുണ്ട്?", ഉമ്മ ചോദിച്ചു. "ഏഴു രൂപ കൂടി തന്നാൽ തികച്ചും അമ്പതു രൂപയാകും", സുഹറ ആഗ്രഹം പറഞ്ഞു.

സുഹറയുടെ പണപ്പെട്ടിയിൽ എത്ര രൂപയുണ്ട്?

7 രൂപ കൂട്ടിയാൽ 50 രൂപയാകും. അപ്പോൾ പെട്ടിയിലുള്ളത് 50 നെക്കാൾ 7 കുറവ്: 50-7=43.

ഉണ്ണി വിഷുക്കൈനീട്ടം കിട്ടിയതിൽനിന്ന് എട്ടു രൂപയെടുത്ത് ഒരു പേന വാങ്ങി. നാൽപ്പത്തിരണ്ടു രൂപ മിച്ചമുണ്ട്. എത്ര രൂപയാണ് കൈനീട്ടം കിട്ടിയത്?

8 രൂപ കുറഞ്ഞപ്പോഴാണ് 42 രൂപയായത്. അപ്പോൾ കൈനീട്ടം കിട്ടിയ ത്, 42 നെക്കാൾ 8 കൂടുതൽ: 42+8=50.

- (1) "ആറ് മാർക്ക് കൂടി കിട്ടിയിരുന്നെങ്കിൽ, കണക്കു പരീക്ഷയ്ക്ക് നൂറു മാർക്കും ആയേനെ," രാജന്റെ സങ്കടം. രാജന് എത്ര മാർക്കാണ് കിട്ടിയത്?
- (2) പുസ്തകം വാങ്ങാൻ ലിസ്സിക്ക് അമ്മ 60 രൂപ കൊടുത്തു. പുസ്തകം വാങ്ങി, മിച്ചം വന്ന 13 രൂപ ലിസ്സി തിരിച്ചേൽപിച്ചു. എത്ര രൂപ യ്ക്കാണ് പുസ്തകം വാങ്ങിയത്?
- (3) ഗോപാലൻ ഒരു കുല പഴം വാങ്ങി. കേടുവന്ന 7 എണ്ണം മാറ്റിക്കഴിഞ്ഞപ്പോൾ 46 എണ്ണമുണ്ട്. കുലയിൽ എത്ര പഴം ഉണ്ടായി രുന്നു?
- (4) വിമല 163 രൂപയ്ക്ക് സാധനങ്ങൾ വാങ്ങി. 217 രൂപ മിച്ചമുണ്ട്. എത്ര രൂപയാണ് കൈയിലുണ്ടായിരുന്നത്?
- (5) ഒരു സംഖ്യയോട് 254 കൂട്ടിയപ്പോൾ 452 ആയി. സംഖ്യ ഏതാണ്?
- (6) ഒരു സംഖ്യയിൽ നിന്ന് 198 കുറച്ചപ്പോൾ 163 ആയി. സംഖ്യ ഏതാണ്?

ഗുണനവും ഹരണവും

ഒരു നിക്ഷേപ പദ്ധതിയിൽ ആറു വർഷം കൊണ്ട് നിക്ഷേപത്തുക രണ്ടു മടങ്ങാകും. അവസാനം പതിനായിരം രൂപ കിട്ടാൻ ഇപ്പോൾ എത്ര രൂപ നിക്ഷേപിക്കണം?

നിക്ഷേപത്തുകയുടെ രണ്ടു മടങ്ങാണ് 10000; അപ്പോൾ നിക്ഷേപത്തുക 10000 ന്റെ പകുതി, 5000.

പച്ചക്കറിക്കച്ചവടത്തിലെ ലാഭം നാലുപേർ തുല്യമായി പങ്കുവച്ചപ്പോൾ ജോസിന് ആയിരത്തി അഞ്ഞൂറ് രൂപ കിട്ടി. ആകെ ലാഭം എത്ര രൂപ യാണ്?

ലാഭത്തിന്റെ $\frac{1}{4}$ ഭാഗമാണ് 1500; അപ്പോൾ ആകെ ലാഭം 1500 ന്റെ 4മടങ്ങ്: $1500 \times 4 = 6000$.

- (1) ഒരു സ്ഥാപനത്തിലെ മാനേജരുടെ ശമ്പളം പ്യൂണിന്റെ ശമ്പള ത്തിന്റെ അഞ്ചിരട്ടിയാണ്. മാനേജർക്ക് മാസം 40000 രൂപയാണ് കിട്ടുന്നത്. പ്യൂണിന് മാസം എത്ര രൂപ കിട്ടും?
- (2) ഒരു വിനോദയാത്രയ്ക്കു പോയവർ ചെലവായ 5200 രൂപ, തുല്യ മായി വീതിച്ചു. ഓരോരുത്തരും 1300 രൂപ കൊടുത്തു. എത്ര പേരാണ് സംഘത്തിലുണ്ടായിരുന്നത്?
- (3) ഒരു സംഖ്യയെ 12 കൊണ്ട് ഗുണിച്ചപ്പോൾ 756 കിട്ടി. ഏതു സംഖ്യ യെയാണ് ഗുണിച്ചത്?
- (4) ഒരു സംഖൃയെ 21 കൊണ്ട് ഹരിച്ചപ്പോൾ 756 കിട്ടി. ഏതു സംഖൃ യെയാണ് ഹരിച്ചത്?

പലവിധമാറ്റം

ഈ കണക്ക് നോക്കൂ:

രണ്ടു നോട്ടുപുസ്തകവും, മൂന്ന് രൂപ വിലയുള്ള ഒരു പേനയും വാങ്ങിയപ്പോൾ 23 രൂപ ചെലവായി. ഒരു നോട്ടുപുസ്തകത്തിന്റെ വില എത്രയാണ്?

ഇങ്ങനെ ആലോചിക്കാം. 3 രൂപയുടെ പേനയും കൂടി വാങ്ങിയപ്പോ ഴാണ് 23 രൂപയായത്. പേന വാങ്ങിയില്ലായിരുന്നെങ്കിലോ?

20 രൂപയെ ആകുമായിരുന്നുള്ളു.

ഈ 20 രൂപ രണ്ടു പുസ്തകങ്ങളുടെ വിലയാണല്ലോ. അപ്പോൾ ഒരു പുസ്തകത്തിന്റെ വില 10 രൂപ. ഇനി തിരിച്ചുനോക്കിയാലോ? 10 രൂപ വിലയുള്ള രണ്ടു പുസ്തകങ്ങൾക്ക് 20 രൂപ, പേനയ്ക്ക് 3 രൂപ; ആകെ 23 രൂപ.

ഈ കണക്ക് നോക്കൂ:

ഒരു സംഖ്യയുടെ മൂന്ന് മടങ്ങിനോട് രണ്ടു കൂട്ടിയപ്പോൾ 50 ആയി. സംഖ്യ ഏതാണ്?

അറിയാത്തൊരു സംഖ്യയെ ആദ്യം 3 കൊണ്ടു ഗുണിച്ച്, പിന്നെ 2 കൂട്ടി യപ്പോൾ 50 ആയി.

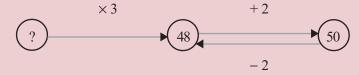
തിരിച്ച്, തുടങ്ങിയ സംഖൃ കിട്ടാൻ എന്തെല്ലാം ചെയ്യണം?

വിപരീതക്രിയ

ഒരു സംഖ്യയോട് 2 കൂട്ടിയ തുക അറി യാമെങ്കിൽ സംഖ്യ കണ്ടുപിടിക്കാൻ 2 കുറയ്ക്കണം. സംഖ്യയിൽ നിന്ന് 2 കുറ ച്ചതാണ് അറിയാവുന്നതെങ്കിലോ? സംഖ്യ തിരിച്ചു കിട്ടാൻ 2 കൂട്ടണം. ഇതുപോലെ സംഖ്യയുടെ 2 കൊണ്ടുള്ള ഗുണനഫല ത്തിൽ നിന്ന് സംഖ്യ കിട്ടാൻ 2 കൊണ്ട് ഹരിക്കുകയും, 2 കൊണ്ടുള്ള ഹരണഫലത്തിൽ നിന്ന് സംഖ്യ കിട്ടാൻ 2 കൊണ്ട് ഗുണിക്കുകയുമാണല്ലോ ചെയ്യേണ്ടത്.

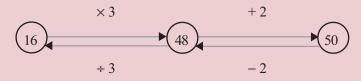
ഭാരതീയ ഗണിതശാസ്ത്രജ്ഞനായ ഭാസ്കരാചാരൃൻ അദ്ദേഹത്തിന്റെ ലീലാ വതി എന്ന കൃതിയിൽ ഇത് ചർച്ച ചെയ്യു ന്നുണ്ട്. വിപരീതക്രിയാരീതി എന്ന് അദ്ദേഹം വിളിക്കുന്ന ഈ മാർഗം പറ ഞ്ഞിരിക്കുന്നത് ഇങ്ങനെയാണ്.

ഫലമറിയാമെങ്കിൽ സംഖൃ ക്കെന്ദത്താൻ ഹര നേത്തെ ഗുനെവാക്കുക. ഗുന്നനത്തെ ഹരന മാക്കുക, വർഗമൂയത്തെ വർഗമാക്കുക, സ്വൂനസംഖൃയെ അധിസംഖൃയാക്കുക. അധിസം ഖ്യെയ ന്യൂനസംഖൃയാക്കുക. അവസാനം 2 കൂട്ടിയപ്പോഴാണല്ലോ 50 ആയത്; അപ്പോൾ അതിനു മുമ്പ് 50-2=48 ആയിരുന്നു.



ഇനി 48 ൽ നിന്ന്, തുടങ്ങിയ സംഖൃയിലെത്തുന്നതെ ങ്ങനെ?

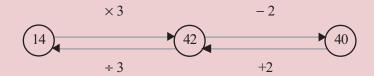
3 കൊണ്ടു ഗുണിച്ചപ്പോഴാണ് 48 ആയത്. അപ്പോൾ തുടങ്ങിയ സംഖ്യ $48 \div 3 = 16$.



ഇപ്പോൾ ചെയ്ത കണക്ക് ഇങ്ങനെ മാറ്റിയാലോ? ഒരു സംഖ്യയുടെ മൂന്നുമടങ്ങിൽനിന്ന് രണ്ടു കുറച്ച പ്പോൾ 40 ആയി. സംഖ്യ ഏതാണ്?

ഇവിടെ അവസാനം 2 കുറയ്ക്കുന്നതിനുമുമ്പ് സംഖ്യ 40+2=42;

ഇത്, 3 കൊണ്ടു ഗുണിച്ചപ്പോൾ കിട്ടിയതാണ്; അപ്പോൾ അതിനും മുമ്പ് $42 \div 3 = 14$. അതായത്, തുടങ്ങിയ സംഖ്യ 14.



മറ്റൊരു കണക്ക് നോക്കൂ:

ഒരു സംഖ്യയോട് അതിന്റെ നാലിലൊന്ന് കൂട്ടിയപ്പോൾ 30 കിട്ടി. സംഖ്യ ഏതാണ്? ഒരു സംഖൃയോട് അതിന്റെ നാലിലൊന്ന് കൂട്ടുമ്പോൾ സംഖ്യയുടെ 🥇 മടങ്ങാണല്ലോ കിട്ടുന്നത്. അതായത്, സംഖ്യയുടെ $\frac{3}{4}$ മടങ്ങാണ് 30. അപ്പോൾ സംഖ്യ 30 ന്റെ $\frac{4}{5}$ ഭാഗമാണ്.

അതായത്, $30 \times \frac{4}{5} = 24$

- (1) അനിതയും കൂട്ടുകാരും പേന വാങ്ങി. അഞ്ചു പേന ഒന്നിച്ചു വാങ്ങി യപ്പോൾ ആകെ വിലയിൽനിന്ന് മൂന്നു രൂപ കുറവു കിട്ടി. അവർക്ക് 32 രൂപയാണ് ചെലവായത്. ഓരോന്നായി വാങ്ങിയിരുന്നെങ്കിൽ, എത്ര രൂപ വീതം കൊടുക്കണമായിരുന്നു?
- (2) ഒരു ചതുരത്തിന്റെ ചുറ്റളവ് 25 മീറ്ററും, ഒരു വശം 5 മീറ്ററുമാണ്. മറ്റേ വശം എത്ര മീറ്ററാണ്?
- (3) ചുവടെയുള്ള കണക്കുകളിലെല്ലാം, ഒരു സംഖ്യയിൽ ചില ക്രിയകൾ ചെയ്തതിന്റെ ഫലം പറഞ്ഞിരിക്കു ന്നു. ഓരോന്നിലും സംഖ്യ കണ്ടുപിടിക്കുക.
 - രണ്ട് മടങ്ങിനോട് മൂന്ന് കൂട്ടിയപ്പോൾ 101.
 - മൂന്ന് മടങ്ങിനോട് രണ്ട് കൂട്ടിയപ്പോൾ 101.
 - രണ്ട് മടങ്ങിൽനിന്ന് മൂന്ന് കുറച്ചപ്പോൾ 101.
 - iv) മൂന്ന് മടങ്ങിൽ നിന്ന് രണ്ട് കുറച്ചപ്പോൾ 101.
- (4) ഒരു സംഖ്യയോട് അതിന്റെ പകുതി കൂട്ടിയപ്പോൾ 111 കിട്ടി. സംഖ്യ എത്രയാണ്?
- (5) പഴയൊരു കണക്ക് : പക്ഷിക്കൂട്ടത്തോട് കുട്ടി ചോദി ച്ചു. "നിങ്ങളെത്ര പേർ?". ഒരു പക്ഷി പറഞ്ഞു:
 - " ഞങ്ങളും ഞങ്ങളോളവും ഞങ്ങളിൽ പകുതിയും അതിൽപ്പകുതിയും ഒന്നും ചേർന്നാൽ നൂറാകും".

എത്ര പക്ഷികളുണ്ടായിരുന്നു?

പക്ഷിക്കണക്കിൽ, അവസാനം പറയുന്ന തുക $100\,$ നു പകരം മറ്റേതൊക്കെ സംഖ്യകളാവാം?

പ്രാചീന ഗണിതം

ഏതാണ്ട് ബി.സി. മൂവായിരത്തോടടുത്ത കാലത്തുതന്നെ ഈജിപ്റ്റുകാർ പലതരം കാര്യങ്ങൾ എഴുതി സൂക്ഷിച്ചിരുന്നു. പപ്പൈറസ് എന്നു പേരുള്ള ചെടിയുടെ തണ്ടുകൾ ഉപയോഗിച്ചുണ്ടാക്കിയിരുന്ന താളുകളിലാണ് അക്കാലത്ത് എഴുതിയി രുന്നത്. ഇത്തരം അനേകം രേഖകൾ പുരാവസ്തുഗവേഷകർ കണ്ടെത്തിയിട്ടു ണ്ട്. അത്തരം രേഖകൾക്കും പപ്പൈറസ് എന്നു തന്നെയാണ് പറയുന്നത്.

ഇത്തരം ഒരു പപ്പൈറസിൽ ഗണിത പ്രശ്നങ്ങളും അവ ചെയ്യാനുള്ള മാർഗ ങ്ങളുമാണ് ചർച്ച ചെയ്യുന്നത്. ഏതാണ്ട് ബി.സി. 1650 ൽ എഴുതപ്പെട്ടതാണ് ഇതെന്ന് കണക്കാക്കിയിട്ടുണ്ട്. ഇതിന്റെ തുടക്കത്തിൽത്തന്നെ ഇതെഴുതിയ ആൾ തന്റെ പേര് ആഹ്മോസ് എന്നാണെന്നും ഇരുന്നൂറ് വർഷത്തോളം പഴക്കമുള്ള ഒരു രേഖയിൽനിന്നും പകർത്തിയെഴുതുകയാ ണെന്നും പറയുന്നുണ്ട്. ബ്രിട്ടീഷ് മ്യൂസി യത്തിൽ സൂക്ഷിച്ചിട്ടുള്ള ഈ രേഖയെ ആഹ്മോസ് പപ്പൈറസ് എന്നാണ് വിളി ക്കുന്നത്. (ഇത് കണ്ടെടുത്തത് അലക്സാ ണ്ടർ റിൻഡ് എന്ന ഗവേഷകനായതിനാൽ റിൻഡ് പപ്പൈറസ് എന്നും പറയാറുണ്ട്); സംഖൃകളെയും രൂപങ്ങളെയും കുറി ച്ചുള്ള പ്രശ്നങ്ങളാണ് ഇതിൽ ചർച്ച ചെയ്യുന്നത്.

ബീജഗണിതരീതി

ഇപ്പോൾ ചെയ്ത കണക്കുകളുടെയെല്ലാം പൊതുസ്വഭാവം എന്താണ്? ഏതോ ഒരു സംഖ്യയിൽ ചില ക്രിയകളെല്ലാം ചെയ്തപ്പോൾ കിട്ടുന്ന ഫലം ഏതു സംഖ്യയാണെന്ന് പറഞ്ഞിട്ടുണ്ട്. തുടങ്ങിയത് ഏതു സംഖ്യ യിൽ നിന്നാണെന്നു കണ്ടുപിടിക്കണം.

എങ്ങനെയാണ് കണ്ടുപിടിച്ചത്? ചെയ്ത ക്രിയകളുടെയെല്ലാം വിപരീ തക്രിയകൾ, അവസാനം ചെയ്തത് ആദ്യം എന്ന ക്രമത്തിൽ ചെയ്യുക. ഉദാഹരണമായി ഈ കണക്കു നോക്കൂ:

പഴയരീതി

ആഹ്മോസ് പപ്പൈറസിലെ ഒരു പ്രശ്നം ഇതാണ്.

ഒരു സംഖ്യയും അതിന്റെ നാലി ലൊന്നും ചേർന്നാൽ പതിനഞ്ചാകും. സംഖ്യ ഏതാണ്?

ഇതിന്റെ ഉത്തരം കണ്ടുപിടിക്കുന്ന രീതി ഇങ്ങനെയാണ്.

4 എന്ന സംഖ്യയോട് അതിന്റെ നാലി ലൊന്നു കൂട്ടിയാൽ കിട്ടുന്നത് 5 ആണ്. നമുക്കു വേണ്ടത് 15 ആണല്ലോ. അത് 5 ന്റെ മൂന്നുമടങ്ങാണ്. അപ്പോൾ പ്രശ്നത്തിന്റെ ഉത്തരം 4 ന്റെ മൂന്നുമട ങ്ങായ 12 ആണ്.

ഈ യുക്തി ഇവിടെ ശരിയാകുന്നത് എന്തുകൊണ്ടാണെന്ന് മനസ്സിലായോ? ഇത് എല്ലാ കണ ക്കിലും ശരിയാ കുമോ? റഷീദ 4 കിലോഗ്രാം വെണ്ടക്കയും 10 രൂപയ്ക്ക് മല്ലി യില, കറിവേപ്പില മുതലായവയും വാങ്ങിയപ്പോൾ 130 രൂപയായി. ഒരു കിലോഗ്രാം വെണ്ടക്കയുടെ വില എന്താണ്?

ആദ്യം ഇത് കണക്കിന്റെ ഭാഷയിൽ എഴുതാം.

ഒരു സംഖ്യയെ 4 കൊണ്ട് ഗുണിച്ച് 10 കൂട്ടിയ പ്പോൾ 130 കിട്ടി. സംഖ്യ ഏതാണ്?

എങ്ങനെയാണ് തുടങ്ങിയ സംഖ്യ കണ്ടുപിടിക്കുന്നത്? അവസാനം കൂട്ടിയ 10 ആദ്യം കുറയ്ക്കുക; ആദ്യം ഗുണിച്ച 4 കൊണ്ട് പിന്നീട് ഹരിക്കുക. അതായത്,

$$(130 - 10) \div 4 = 120 \div 4 = 30$$

അങ്ങനെ ഒരു കിലോഗ്രാം വെണ്ടക്കയുടെ വില 30 രൂപ യാണെന്നു കാണാം.

ഇനി ഈ കണക്കു നോക്കുക:

പത്തു മീറ്റർ നീളമുള്ള കമ്പി വളച്ച്, ഒരു ചതുരമു ണ്ടാക്കണം. വീതിയേക്കാൾ ഒരു മീറ്റർ കൂടുതൽ നീളം വേണം. നീളവും വീതിയും എത്രയാകണം?

ആദ്യം പ്രശ്നത്തെ സംഖ്യകൾ മാത്രമുപയോഗിച്ചു പറയാം. ചതുരത്തിന്റെ ചുറ്റളവ്, നീളവും വീതിയും കൂട്ടിയതിന്റെ രണ്ടു മടങ്ങാണല്ലോ. ഇവിടെ നീളം വീതിയെക്കാൾ 1 കൂടുതലാണ്. അപ്പോൾ നീളവും വീതിയും കൂട്ടുകയെന്നാൽ, വീതിയും, വീതിയോട് 1 കൂട്ടിയതും തമ്മിൽ കൂട്ടുക എന്നാകും. അപ്പോൾ പ്രശ്നം ഇതാണ്:

ഒരു സംഖ്യയുടേയും, അതിനോട് 1 കൂട്ടിയതിന്റേയും തുകയുടെ 2 മടങ്ങ് 10 ആണ്; സംഖ്യ ഏതാണ്?

അവസാനമെടുത്ത രണ്ടു മടങ്ങ് ഒഴിവാക്കിയാൽ ഇങ്ങനെ പറയാം:

ഒരു സംഖ്യയുടേയും, അതിനോട് 1 കൂട്ടിയതിന്റേയും തുക 5; സംഖ്യ ഏതാണ്? ഏതു സംഖ്യയായാലും, അതും അതിനോട് ഒന്നു കൂട്ടിയതും തമ്മിൽ കൂട്ടുന്നത്, അതിന്റെ രണ്ടുമടങ്ങിനോട് ഒന്നു കൂട്ടുന്നതിനു തുല്യമാണെന്ന് ഏഴാം ക്ലാസിൽ കണ്ടത് ഓർമയുണ്ടോ? (മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിലെ സംഖ്യാബന്ധങ്ങൾ എന്ന ഭാഗം)

ഇക്കാര്യം ബീജഗണിതത്തിലെഴുതുന്നതാണ് സൗകര്യമെന്നും കണ്ടു:

$$x$$
 ഏതു സംഖ്യ ആയാലും, $x + (x + 1) = 2x + 1$.

ഇപ്പോൾ ആലോചിക്കുന്ന കണക്കിൽ ഇക്കാര്യം ഉപയോഗിക്കാം: ഈ കണക്കിലെ സംഖ്യ x എന്നെടുത്താൽ, ഈ പ്രശ്നം ഇങ്ങനെയാകും.

$$2x + 1 = 5$$
 ആണെങ്കിൽ x എത്രയാണ്?

എന്താണിതിന്റെ അർഥം?

ഒരു സംഖൃയുടെ 2 മടങ്ങിനോട് 1 കൂട്ടിയപ്പോൾ 5; സംഖ്യ ഏതാണ്?

വിപരീതക്രിയകളിലൂടെ സംഖ്യ കണ്ടുപിടിക്കാമല്ലോ:

$$(5-1) \div 2 = 2$$

അപ്പോൾ ചതുരത്തിന്റെ വീതി 2 മീറ്ററും, നീളം 3 മീറ്ററുമാ ണെന്നു കിട്ടും.

ഇങ്ങനെയുള്ള കണക്കുകൾ, ആദ്യം മുതൽ തന്നെ ബീജ ഗണിതം ഉപയോഗിച്ച് ചെയ്യുന്നതാണ് ചിലപ്പോൾ സൗകര്യം. ഈ കണക്കു നോക്കൂ:

ഒരു കസേരയ്ക്കും മേശയ്ക്കും കൂടി 4500 രൂപയാണ് വില. മേശയ്ക്ക് കസേരയേക്കാൾ 1000 രൂപ കൂടുത ലാണ്. ഓരോന്നിന്റെയും വിലയെന്താണ്?

ഇവിടെ കസേരയുടെ വില $\,x\,$ രൂപ എന്നെടുത്ത് ചെയ്തു നോക്കാം.

മേശയുടെ വില 1000 രൂപ കൂടുതലായതിനാൽ, അതിന്റെ വില x+1000 രൂപ. അപ്പോൾ പ്രശ്നത്തിന്റെ ബീജഗണി തരൂപം എന്താണ്?

x + (x + 1000) = 4500 ആണെങ്കിൽ, x എത്രയാണ്? ഇതിൽ x+(x+1000) എന്നതിനെ എങ്ങനെ മാറ്റിയെ ഴുതാം?

$$x + (x + 1000) = 2x + 1000$$

അപ്പോൾ പ്രശ്നം ഇങ്ങനെയാകും:

2x + 1000 = 4500 ആണെങ്കിൽ, x ഏത്രയാണ്? എന്താണിതിന്റെ അർഥം?

കുട്ടലും കുറയ്ക്കലും

ഒരു സംഖ്യയോട് മറ്റൊരു സംഖ്യ കൂട്ടിയ ശേഷം കൂട്ടിയ സംഖൃ കുറച്ചാൽ ആദ്യത്തെ സംഖൃതന്നെ കിട്ടും. ഇത് ബീജ ഗണിതഭാഷയിൽ ഇങ്ങനെ എഴുതാം.

$$x$$
, a ഏത് സംഖൃകളായാലും $(x+a)-a=x$

ഇതു തന്നെ മറ്റൊരു വിധത്തിലും എഴുതാം.

$$x + a = b$$
 ആണെങ്കിൽ $x = b - a$

ഒരു സംഖ്യയോട് മറ്റൊരു സംഖ്യ കൂട്ടിക്കി ട്ടിയ തുകയും, കൂട്ടിയ സംഖ്യയും അറിയാ മെങ്കിൽ, ഏതു സംഖ്യയോടാണ് കൂട്ടിയ തെന്ന് കണ്ടുപിടിക്കുന്ന രീതിയുടെ ബീജ ഗണിതരുപമാണിത്.

ഇതുപോലെ

$$x - a = b$$
 ആണെങ്കിൽ $x = b + a$

എന്നതും ശരിയാണ്. ഒരു സംഖൃയിൽ നിന്ന് മറ്റൊരു സംഖൃ കുറച്ചാൽ കിട്ടു ന്നതും, കുറച്ചത് ഏതു സംഖ്യയാണെന്നും അറിയാമെങ്കിൽ, ഏതു സംഖൃയിൽ നിന്നാണ് കുറച്ചതെന്ന് കണ്ടുപിടിക്കാനുള്ള രീതിയുടെ ബീജഗണിതരുപമാണിത്.

ഒരു സംഖ്യയുടെ 2 മടങ്ങിനോട് 1000 കൂട്ടിയപ്പോൾ 4500; സംഖ്യ ഏതാണ്?

ഇതു നേരത്തെ ചെയ്ത കണക്കു തന്നെയല്ലേ? സംഖ്യകൾ മാറി എന്ന ല്ലേയുള്ളു?

വിപരീതക്രിയകളിലൂടെ സംഖ്യ കണ്ടുപിടിക്കാം. അവയും ബീജഗണി തത്തിൽ എഴുതിയാലോ?

സംഖ്യയുടെ രണ്ടു മടങ്ങ് 4500-1000=3500 എന്നാണ് ആദ്യം കിട്ടു ന്നത്; അതായത്

ഗുണനവും ഹരണവും

ഒരു സംഖ്യയെ മറ്റൊരു സംഖ്യ കൊണ്ട് ഗുണിച്ചാലുള്ള ഫലത്തിൽനിന്ന് ആദ്യത്തെ സംഖ്യ കിട്ടാൻ, ഗുണിച്ച സംഖ്യകൊണ്ട് ഹരിച്ചാൽ മതി. ഇതുപോലെ ഹരണഫലത്തിൽ നിന്ന് സംഖ്യ കിട്ടാൻ, ഹരിച്ച സംഖ്യകൊണ്ട് ഗുണിച്ചാൽ മതി. ബീജഗണിത ഭാഷയിൽ

$$ax = b \ (a \neq 0)$$
 ആണെങ്കിൽ $x = \frac{b}{a}$

$$\frac{x}{a} = b \text{ ആണെങ്കിൽ } x = ab$$

എന്നെല്ലാം എഴുതാം. ഗുണന ഫലത്തിൽ നിന്നും ഹരണഫലത്തിൽ നിന്നും ഒരു സംഖൃയെ വീണ്ടെടുക്കാൻ ഉപയോഗിക്കുന്ന വിപരീതക്രിയാ രീതിയുടെ ബീജഗണിത രൂപങ്ങളാണിവ.

$$2x = 4500 - 1000 = 3500$$

അപ്പോൾ സംഖ്യ $3500 \div 2 = 1750$ എന്നു കണ്ടുപിടിക്കാം. ബീജഗണിതത്തിൽ എഴുതിയാൽ

$$x = 3500 \div 2 = 1750$$

ഇനി തുടങ്ങിയ പ്രശ്നത്തിലേക്ക് മടങ്ങിച്ചെന്ന്, കസേ രയുടെ വില 1750 രൂപ, മേശയുടെ വില 2750 രൂപ എന്നു പറയാം.

ഒരു കണക്കു കൂടി നോക്കാം:

നൂറു രൂപ ചില്ലറയാക്കിയപ്പോൾ ഇരുപതി ന്റെയും പത്തിന്റെയും നോട്ടുകളാണ് കിട്ടിയത്. ആകെ ഏഴു നോട്ടുകൾ. ഓരോന്നും എത്ര വീതം?

ഇരുപതുരൂപ നോട്ടുകൾ x എണ്ണം എന്നെടുക്കാം; അപ്പോൾ പത്തുരൂപ നോട്ടുകളുടെ എണ്ണം 7-x.

x ഇരുപതുരൂപ നോട്ടുകളെന്നാൽ 20x രൂപ.

7-x പത്തുരൂപ നോട്ടുകളെന്നാൽ $10\times(7-x)$ രൂപ. ആകെ $20x+10\times(7-x)$ രൂപ; ഇത് 100 രൂപയാണെന്നു പറഞ്ഞിട്ടുണ്ടല്ലോ.

അപ്പോൾ പ്രശ്നം ബീജഗണിതഭാഷയിൽ ഇങ്ങനെയാകും:

$$20x + 10(7 - x) = 100$$
 ആണെങ്കിൽ, x എത്രയാണ്?

ഇതിൽ 20x + 10(7 - x) നെ അൽപം ചെറുതാക്കാം:

$$20x + 10(7 - x) = 20x + 70 - 10x = 10x + 70$$

ഇതുപയോഗിച്ച്, പ്രശ്നവും മാറ്റിയെഴുതാം:

10x + 70 = 100 ആണെങ്കിൽ, x എത്രയാണ്?

x എന്ന സംഖ്യയുടെ 10 മടങ്ങിനോട് 70 കൂട്ടിയപ്പോൾ 100 കിട്ടി, എന്നാ ണല്ലോ ഇതിന്റെ അർഥം; അപ്പോൾ x എന്ന സംഖ്യ കിട്ടാൻ 100 ൽ നിന്ന് 70 കുറച്ച്, 10 കൊണ്ടു ഹരിക്കണം. ബീജഗണിതത്തിൽ എഴുതി യാൽ

$$x = (100 - 70) \div 10 = 30 \div 10 = 3$$

അതായത്, തുടങ്ങിയ പ്രശ്നത്തിന്റെ ഉത്തരം 3 ഇരുപതുരൂപാനോട്ടു കൾ, 4 പത്തുരുപാനോട്ടുകൾ.

അൽഖ്വാരിസ്മി

- (1) 80 മീറ്റർ ചുറ്റളവുള്ള ഒരു ചതുരത്തിന്റെ നീളം, വീതിയുടെ രണ്ടു മടങ്ങിനേക്കാൾ ഒരു മീറ്റർ കൂടുതലാണ്. അതിന്റെ വീതിയും നീളവും എത്രയാണ്?
- (2) ഒരു വരയിലെ ഒരു ബിന്ദുവിൽ നിന്ന് മറ്റൊരു വര വരയ്ക്കണം. ഇരുവശത്തുമുണ്ടാകുന്ന കോണുകളിൽ ഒന്ന്, മറ്റേതിനെക്കാൾ 50° കൂടുതലായിരിക്കണം. ചെറിയ കോൺ എത്രയാകണം?
- (3) ഒരു പുസ്തകത്തിന്റെ വില, ഒരു പേനയുടെ വില യെക്കാൾ 4 രൂപ കൂടുതലാണ്. ഒരു പെൻസിലിന്റെ വില, ഈ പേനയുടെ വിലയേക്കാൾ 2 രൂപ കുറവു മാണ്. ഒരാൾ 5 പുസ്തകവും 2 പേനയും 3 പെൻസിലും വാങ്ങി. ആകെ 74 രൂപയായി. ഓരോ ന്നിന്റെയും വില എത്രയാണ്?
- (4) i) അടുത്തടുത്ത മൂന്നു എണ്ണൽസംഖ്യകളുടെ തുക 36 ആണ്. സംഖ്യകൾ ഏതൊക്കെയാണ്?
 - അടുത്തടുത്ത മൂന്നു ഇരട്ടസംഖ്യകളുടെ തുക 36 ആണ്. സംഖ്യകൾ ഏതൊക്കെയാണ്?
 - iii) അടുത്തടുത്ത മൂന്നു ഒറ്റസംഖ്യകളുടെ തുക 36 ആകുമോ? കാരണം?
 - iv) അടുത്തടുത്ത മൂന്നു ഒറ്റസംഖ്യകളുടെ തുക 33 ആണ്. സംഖൃകൾ ഏതൊക്കെയാണ്?
 - v) അടുത്തടുത്ത മൂന്നു എണ്ണൽസംഖ്യകളുടെ തുക 33 ആണ്. സംഖ്യകൾ ഏതൊക്കെയാണ്?
- (5) i) കലണ്ടറിൽ നാലു സംഖൃകളുള്ള ഒരു സമച തുരം അടയാളപ്പെടുത്തി, അതിലെ സംഖൃക ളെല്ലാം കൂട്ടിയപ്പോൾ 80 കിട്ടി. സംഖ്യകൾ എതൊക്കെയാണ്?

പേര് വന്ന വഴി

അറബ് കൃതികളുടെ പരിഭാഷകളി ലൂടെയാണ് നവോത്ഥാനകാല യൂറോപ്പിൽ ബീജഗണിതം പ്രചരിച്ചത്. ഇവയിൽ പ്രധാനം മുഹമ്മദ് അൽഖ്വാരിസ്മി എന്ന ഗണിതശാസ്ത്രജ്ഞന്റെ കൃതികളാണ്.

നൂറ്റാണ്ടി ലാണ് എ.ഡി. എട്ടാം അൽഖാാരിസ്മി ജീവിച്ചിരുന്നത്. അറി യാത്ത സംഖൃകളെ സൂചിപ്പിക്കാൻ വസ്തു എന്നർഥം വരുന്ന അറബ് വാക്കാണ് ഇദ്ദേഹം ഉപയോഗിച്ചിരിക്കുന്നത്.

ഒരു സംഖൃയിൽ നിന്ന് 2 കുറച്ചപ്പോൾ 5 കിട്ടി എന്നതിൽ നിന്ന് സംഖ്യ കണ്ടുപിടി ക്കാൻ 5 ഉം 2 ഉം കൂട്ടുകയാണല്ലോ ചെയ്യു ന്നത്. ഇത്തരം ക്രിയകളെ അൽജബർ എന്ന അറബ് വാക്കുകൊണ്ടാണ് അൽഖാ രിസ്മി സൂചിപ്പിക്കുന്നത്. "കൂട്ടിച്ചേർക്കുക" അല്ലെങ്കിൽ "പൂർവസ്ഥിതിയിലാക്കുക" എന്നാണ് ഈ വാക്കിന്റെ അർഥം. ബീജഗ ണിതത്തിന് ഇംഗ്ലീഷിൽ algebra എന്ന പേരു വന്നത് ഈ അറബ് വാക്കിൽ നിന്നാണ്.

ചിട്ടയായ ചുവടുകളിലൂടെ ഒരു പ്രശ്നം പരി ഹരിക്കുന്ന പദ്ധതിക്ക് (വിശേഷിച്ചു കമ്പ്യൂ algorithm ട്ടറുകളിൽ) എന്നു പേരുണ്ട്.അൽഖ്വാരിസ്മി എന്ന വാക്കിൽ നിന്നാണ് ഇതുണ്ടായത്.

i) കലണ്ടറിൽ ഒൻപതു സംഖൃകളുള്ള ഒരു സമചതുരം അടയാള പ്പെടുത്തി, അതിലെ സംഖൃകളെല്ലാം കൂട്ടിയപ്പോൾ 90 കിട്ടി. സംഖൃകൾ ഏതൊക്കെയാണ്?

വൃതൃസ്ത പ്രശ്നങ്ങൾ

ഈ കണക്കുനോക്കൂ:

ഒരു സംഖ്യയുടെ മൂന്നു മടങ്ങിനോട് പത്തു കൂട്ടിയപ്പോൾ സംഖ്യ യുടെ അഞ്ചു മടങ്ങായി. സംഖ്യ ഏതാണ്?

ഇവിടെ വിപരീതക്രിയകളിലൂടെ സംഖ്യ കണ്ടുപിടിക്കാൻ കഴിയില്ലല്ലോ: പക്ഷേ, ഇങ്ങനെ ആലോചിക്കാം: ഏതു സംഖ്യയുടെയും മൂന്നു മടങ്ങിനെ അഞ്ച് മടങ്ങാക്കാൻ കൂട്ടേണ്ടത്, സംഖ്യയുടെ രണ്ടു മടങ്ങാണ് (ഏഴാം ക്ലാസിലെ മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിൽ, സംഖ്യാബന്ധങ്ങൾ എന്ന ഭാഗം).

കണക്കിൽ പറഞ്ഞിരിക്കുന്നത്, കൂട്ടിയത് പത്ത് എന്നാണ്; അപ്പോൾ, സംഖ്യയുടെ രണ്ടു മടങ്ങ് പത്ത്, അതിനാൽ സംഖ്യ അഞ്ച് എന്നു കണ ക്കുകൂട്ടാം.

ഇതു ബീജഗണിതത്തിൽ പറഞ്ഞാലോ?

തുടങ്ങിയ സംഖ്യ x എന്നെടുത്താൽ, പ്രശ്നത്തിൽ പറഞ്ഞിരിക്കുന്നത്,

$$3x + 10 = 5x$$

3x നെ 5x ആക്കാൻ കൂട്ടേണ്ടത് 2x ആണെന്നറിയാം; അതായത്,

x ഏതു സംഖ്യയായാലും, 3x + 2x = 5x.

സമവാക്യങ്ങൾ

2x + 3 = 3x + 2 എന്നെഴുതുന്നതിന്റെ അർഥം എന്താണ്?

x എന്ന സംഖ്യയുടെ 2 മടങ്ങിനോട് 3 കൂട്ടിയാലും, 3 മടങ്ങിനോട് 2 കൂട്ടി യാലും ഒരേ സംഖ്യ കിട്ടും. ഇങ്ങനെ സംഖ്യകളുടെ തുല്യതയേ സൂചിപ്പി ക്കുന്ന ബീജഗണിതവാക്യങ്ങളെ പൊതുവെ സമവാക്യങ്ങൾ (equations) എന്നാണ് പറയുന്നത്.

നമ്മുടെ കണക്കിൽ 3x നെ 5x ആക്കാൻ കൂട്ടിയത് 10 ആണ്. അപ്പോൾ 2x=10; അതിനാൽ x=5.

കണക്ക് അൽപം മാറ്റി ഇങ്ങനെയാക്കിയാലോ?

ഒരു സംഖ്യയുടെ 13 മടങ്ങിനോട് 36 കൂട്ടിയപ്പോൾ സംഖ്യയുടെ 31 മടങ്ങായി. സംഖ്യ ഏതാണ്?

ഒരു സംഖ്യയുടെ 13 മടങ്ങിനെ 31 മടങ്ങാക്കാൻ സംഖ്യ യുടെ എത്ര മടങ്ങ് കൂട്ടണം?

31 - 13 = 18 മടങ്ങ്, അല്ലേ?

കൂട്ടിയത് 36 എന്നാണ് പറഞ്ഞിരിക്കുന്നത്. അപ്പോൾ സംഖൃയുടെ 18 മടങ്ങ് 36; സംഖൃ, 2.

ബീജഗണിതത്തിൽ പറഞ്ഞാലോ? സംഖ്യ *x* എന്നെടു ത്താൽ പ്രശ്നവും അതു പരിഹരിച്ച രീതിയും ചേർത്ത് ഇങ്ങനെയെഴുതാം:

$$13x + 36 = 31x$$
$$31x - 13x = 18x$$
$$18x = 36$$

$$x = 2$$

ഇനി ഈ കണക്കു നോക്കൂ:

ഒരു സംഖ്യയുടെ 3 മടങ്ങിനോട് 12 കൂട്ടിയത്, സംഖ്യ യുടെ 5 മടങ്ങിനോട് 2 കൂട്ടിയതിന് തുല്യമാണ്. സംഖ്യ ഏതാണ്?

സംഖ്യ x എന്നെടുത്ത്, പറഞ്ഞിരിക്കുന്ന കാര്യം ഇങ്ങനെ എഴുതാം:

$$3x + 12 = 5x + 2$$

3x നോട് 2x കൂട്ടിയാൽ 5x ആകും.

5x + 2 ആക്കണമെങ്കിൽ, 2 ഉം കൂടി കൂട്ടണ്ടേ? അതായത്,

$$3x + (2x + 2) = 5x + 2$$

തന്നിട്ടുള്ള കണക്കനുസരിച്ച്, കൂട്ടിയ സംഖ്യ 12 ആണല്ലോ. അപ്പോൾ,

$$2x + 2 = 12$$

ഇനി വിപരീതക്രിയകൾ ചെയ്ത് x കണ്ടുപിടിക്കാം.

$$x = (12 - 2) \div 2 = 5$$

മറ്റു ചില കണക്കുകൾ നോക്കാം:

അപ്പുവിന്റെ അമ്മയുടെ പ്രായം, അപ്പുവിന്റെ പ്രായത്തിന്റെ ഒൻപതു മടങ്ങാണ്. ഒൻപതു വർഷം കഴിയുമ്പോൾ, ഇത് മൂന്നു മടങ്ങായി മാറും. ഇവരുടെ ഇപ്പോഴത്തെ പ്രായം എത്രയാണ്?

അപ്പുവിന്റെ ഇപ്പോഴത്തെ പ്രായം x എന്നെടുത്തു തുടങ്ങാം. അപ്പോൾ തന്നിട്ടുള്ള വിവരമനുസരിച്ച്, അമ്മയുടെ ഇപ്പോഴത്തെ പ്രായം 9x.

9 വർഷം കഴിഞ്ഞാലോ?

അപ്പുവിന്റെ പ്രായം x+9

അമ്മയുടെ പ്രായം 9x + 9

പറഞ്ഞിട്ടുള്ള കണക്കനുസരിച്ച്, ഇത് അപ്പുവിന്റെ പ്രായത്തിന്റെ 3 മട ങ്ങാണ്; അതായത് 3(x+9) = 3x + 27

ഇനി കണക്കിൽ പറഞ്ഞ കാര്യം ബീജഗണിതത്തിൽ ഇങ്ങനെയെഴു താം:

$$3x + 27 = 9x + 9$$

3x നെ 9x + 9 ആക്കാൻ എന്തെല്ലാം കൂട്ടണം?

ഒൻപതിന്റെ കളി

9 ൽ അവസാനിക്കുന്ന ഏതെങ്കിലും രണ്ട ക്കസംഖ്യ എടുത്ത്, അക്കങ്ങളുടെ തുകയും ഗുണനഫലവും കൂട്ടി നോക്കൂ. ഉദാഹരണമായി 29 എടുത്താൽ അക്കങ്ങ ളുടെ തുക 2+9=11.

ഗുണനഫലം $2 \times 9 = 18$.

ഇവ തമ്മിൽ കൂട്ടിയാൽ 18 + 11 = 29.

9 ൽ അവസാനിക്കുന്ന എല്ലാ സംഖ്യ കൾക്കും ഇത് ശരിയാകുമോ?

സംഖ്യ 10x + 9 എന്നെടുത്തു നോക്കൂ.

9 അല്ലാത്ത മറ്റേതെങ്കിലും അക്കങ്ങളിൽ അവസാനിക്കുന്ന രണ്ടക്കസംഖൃകൾക്ക് ഈ സവിശേഷതയുണ്ടോ?

10x+y=x+y+xy എന്നതിൽനിന്ന് y കണ്ടു പിടിക്കാമോ?

ബീജഗണിതത്തിൽ പറഞ്ഞാൽ

$$(9x + 9) - 3x = 6x + 9$$

ഈ കണക്കിൽ കൂട്ടിയത് 27. അപ്പോൾ

$$6x + 9 = 27$$

ഇതിൽ നിന്ന് 6x = 27 - 9 = 18 എന്നും, തുടർന്ന് $x = 18 \div 6 = 3$ എന്നും കാണാമല്ലോ. അതായത്, അപ്പുവിന്റെ പ്രായം 3, അമ്മയുടെ പ്രായം $3 \times 9 = 27$.

- (1) ശാസ്ത്രപ്രദർശനത്തിന്, കുട്ടികൾക്ക് 10 രൂപയും, മുതിർന്നവർക്ക് 25 രൂപയുമാണ് ടിക്കറ്റ് നിരക്ക്. 50 പേർക്ക് ടിക്കറ്റ് കൊടുത്തു കഴി ഞ്ഞപ്പോൾ 740 രൂപ കിട്ടി. ഇതിൽ എത്ര കുട്ടികളുണ്ടായിരുന്നു?
- (2) ഒരു ക്ലാസിലെ ആൺകുട്ടികളുടെയും പെൺകുട്ടികളുടെയും എണ്ണം തുല്യമാണ്. എട്ട് ആൺകുട്ടികൾ മാത്രം വരാതിരുന്ന ഒരു ദിവസം, ഈ ക്ലാസിലെ പെൺകുട്ടികളുടെ എണ്ണം ആൺകുട്ടികളുടെ എണ്ണ ത്തിന്റെ രണ്ടു മടങ്ങായിരുന്നു. ആൺകുട്ടികളുടെയും പെൺകുട്ടിക ളുടെയും എണ്ണം എത്രയാണ്?
- (3) അജയന് വിജയനേക്കാൾ പത്തു വയസ് കൂടുതലാണ്. അടുത്ത വർഷം അജയന്റെ പ്രായം, വിജയന്റെ പ്രായത്തിന്റെ രണ്ടു മടങ്ങാ കും. ഇപ്പോൾ ഇവരുടെ പ്രായമെത്രയാണ്?
- (4) ഒരു സംഖ്യയുടെ അഞ്ച് മടങ്ങ് ആ സംഖ്യയെക്കാൾ 4 കൂടുതലായ മറ്റൊരു സംഖ്യയുടെ മൂന്ന് മടങ്ങിന് തുല്യമാണെങ്കിൽ സംഖ്യ ഏത്?
- (5) ഒരു സഹകരണസംഘത്തിൽ സ്ത്രീകളുടെ എണ്ണത്തിന്റെ മൂന്ന് മട ങ്ങാണ് പുരുഷന്മാരുടെ എണ്ണം. 29 സ്ത്രീകളും 16 പുരുഷന്മാരും കൂടി സംഘത്തിൽ ചേർന്നപ്പോൾ പുരുഷന്മാരുടെ എണ്ണം സ്ത്രീക ളുടെ എണ്ണത്തിന്റെ രണ്ട് മടങ്ങായി. സംഘത്തിൽ ആദ്യം എത്ര സ്ത്രീകളുണ്ടായിരുന്നു?

പഴങ്കണക്ക്

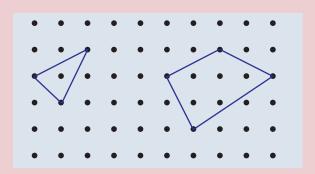
ഒരു കുളത്തിൽ താമരപ്പുക്കൾ വിരിഞ്ഞു നിൽക്കുന്നു. പറന്നെത്തിയ കിളിക്കൂട്ടം, ക്ഷീണമക റ്റാൻ പൂക്കളിലിരുന്നു. ഒരു താമരയിൽ ഒരു കിളി വീതം ഇരുന്നപ്പോൾ ഒരു കിളിക്ക് ഇടമില്ലാതായി. ഒരു താമരയിൽ ഇരുകിളി കളായി ചേർന്നിരുന്ന പ്പോൾ, ഒരു താമര ബാക്കിയായി. താമരയെത്ര? കിളിയെത്ര?

തിരിഞ്ഞു നോക്കുമ്പോൾ

	പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
•	ലളിതമായ സംഖൃാപ്രശ്നങ്ങൾ വിപരീതക്രി യകളിലുടെ പരിഹരിക്കുന്നു.			
•	വിപരീതക്രിയകളിലൂടെ നേരിട്ട് പരിഹരി ക്കാൻ കഴിയാത്ത പ്രശ്നങ്ങളിൽ ആവശ്യമ നുസരിച്ച് ബീജഗണിതം ഉപയോഗിക്കുന്നു.			

രൂപങ്ങൾ

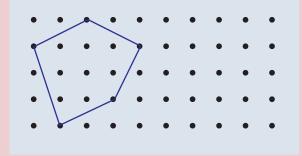
ചിത്രം നോക്കൂ.



കുത്തുകൾ യോജിപ്പിച്ച് പല തരം രൂപങ്ങൾ. മൂന്നു കുത്തുകൾ യോജിപ്പിച്ച് ത്രികോണം. ചതുർഭുജമോ? ഇനി അഞ്ചു കുത്തുകൾ യോജിപ്പിച്ച് വരച്ചത് നോക്കൂ. എത്ര മൂലകൾ? എത്ര വശങ്ങൾ?

വിചിത്ര ബഹുഭുജങ്ങൾ ഈ ചിത്രങ്ങൾ നോക്കൂ.

ഇവയും നേർവരകൾ മാത്രം ഉപയോ ഗിച്ചാണ് വരച്ചിരിക്കുന്നത്. അതിനാൽ ഇവയേയും ബഹുഭുജങ്ങളായി ചില പ്പോൾ പരിഗണിക്കാറുണ്ട്. എന്നാൽ നമ്മുടെ പാഠത്തിൽ, ശീർഷങ്ങൾ അക ത്തേക്കു കുഴിഞ്ഞിരിക്കുന്നതോ, വശ ങ്ങൾ പരസ്പരം മുറിച്ചു കടക്കുന്നതോ ആയ ഇത്തരം രൂപങ്ങളെ ബഹുഭുജങ്ങ ളുടെ കൂട്ടത്തിൽ ഉൾപ്പെടുത്തുന്നില്ല. നാം പൊതുവായി പറയാനുദ്ദേശിക്കുന്ന പല തത്വങ്ങളും ഇവയ്ക്ക് ബാധകമാകാത്ത



ആറ് മൂലയുള്ള രൂപം വരയ്ക്കുക.

എത്ര വശങ്ങൾ?

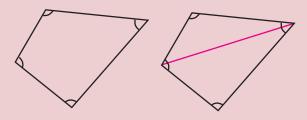
അഞ്ച് വശങ്ങളും അഞ്ച് മൂലകളും ഉള്ള രൂപങ്ങളെ പഞ്ച ഭുജം എന്ന് പറയും. ആറ് വശങ്ങളും ആറ് മൂലകളും ഉള്ള രൂപങ്ങളുടെ പേരാണ് ഷഡ്ഭുജം (അഞ്ചാം ക്ലാസിലെ കണ ക്കുപുസ്തകത്തിൽ, വരകൾ ചേരുമ്പോൾ എന്ന പാഠ ത്തിലെ ബഹുഭുജങ്ങൾ എന്ന ഭാഗം). ഇങ്ങനെ മൂന്നോ അതിലധികമോ വശങ്ങളുള്ള രൂപത്തിന്റെ പൊതുവായ പേരാണ് ബഹുഭുജം (polygon).

കോണുകളുടെ തുക

ഒരു ത്രികോണത്തിലെ മൂന്ന് കോണുകളും കൂട്ടിയാൽ 180° കിട്ടുമെന്ന് ഏഴാം ക്ലാസിൽ കണ്ടല്ലോ.

ഇതുപോലെ എല്ലാ ചതുർഭുജത്തിലും കോണുകളുടെ തുക ഒന്നുതന്നെയാണോ?

ഒരു ചതുർഭുജം വരച്ച് അതിന്റെ ഒരു വികർണം വരച്ച് നോക്കൂ.



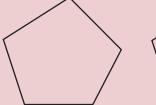
ചതുർഭുജം ഇപ്പോൾ രണ്ട് ത്രികോണങ്ങളായി. വികർണം രണ്ട് മൂലയി ലേയും കോണുകളെ രണ്ട് ഭാഗമാക്കുന്നു; ഒരു ഭാഗം ഒരു ത്രികോണ ത്തിലും മറുഭാഗം മറ്റേ ത്രികോണത്തിലും. അപ്പോൾ ചതുർഭുജത്തിലെ കോണുകൾ രണ്ടു ത്രികോണത്തിലെയും കോണുകളായി. അതിനാൽ ചതുർഭുജത്തിലെ നാലു കോണുകളുടെ തുക, രണ്ട് ത്രികോണത്തി ലെയും കോണുകളുടെ തുക തന്നെയാണല്ലോ.

അതായത്, $2 \times 180^{\circ} = 360^{\circ}$.

ഏതു ചതുർഭുജത്തിലും ഇതുപോലെ കോണുകളുടെ തുക 360° തന്നെ യാണെന്ന് കാണാം.

ഇനി പഞ്ചഭുജമായാലോ?

ഒന്നിടവിട്ട രണ്ടു മൂലകൾ യോജിപ്പിച്ച് ഒരു ചതുർഭുജവും ഒരു ത്രികോ ണവുമായി ഭാഗിക്കാം.



ഈ ചതുർഭുജത്തിന്റെയും ത്രികോണത്തിന്റെയും കോണുകളുടെ തുക യാണ്, പഞ്ചഭുജത്തിലെ കോണുകളുടെ തുക. അതായത്,

$$360^{\circ} + 180^{\circ} = 540^{\circ}$$

മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ, പഞ്ചഭുജത്തിനെ മൂന്ന് ത്രികോണങ്ങ ളായി ഭാഗിക്കാം; അവയുടെ കോണുകളുടെയെല്ലാം തുകയാണ്, പഞ്ച ഭുജത്തിലെ കോണുകളുടെ തുക.

ബിന്ദുവിനു ചുറ്റും

ഈ ചിത്രം നോക്കൂ:



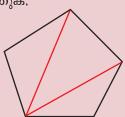
ഒരു ബിന്ദുവിൽത്തന്നെ കുറേ കോണു കൾ അടയാളപ്പെടുത്തിയിരിക്കുന്നു. ഇവ യുടെ തുകയെന്താണ്?

ഇവയുടെ വശങ്ങളെല്ലാം ഒരേ നീളത്തിലാ ക്കിയാൽ, ചുവടെ കാണുന്നതുപോലെ ഒരു വൃത്തം വരയ്ക്കാം.

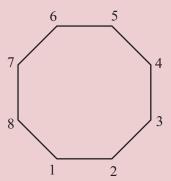
അപ്പോൾ ഈ കോണുകൾ കൃത്യ മായിച്ചേർത്തുവച്ച് ഒരു പൂർണവൃത്തമു ണ്ടാക്കാം; അഥവാ ഒരു വൃത്തത്തെ മുറിച്ച് കിട്ടുന്നവയാണ് ഈ കോണുകൾ. അപ്പോൾ, ഡിഗ്രി എന്ന അളവിന്റെ നിർവ ചനമനുസരിച്ച്, അവയുടെ തുക 360° ആണ്.

ഇപ്പോൾ കണ്ട കാര്യം, ഇങ്ങനെ ചുരുക്കി പ്പറയാം:

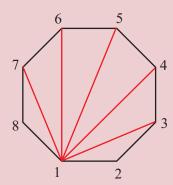
ഒരു ബിന്ദുവിനു ചുറ്റുമുള്ള കോണുകളുടെ തുക 360° ആണ്.



ഇനി എട്ട് വശമുള്ള ബഹുഭുജം (അഷ്ടഭുജം) ആയാലോ?



എത്ര ത്രികോണങ്ങളായി ഭാഗിക്കാം? 1-ാം മൂലയെ 3,4,5,6,7 എന്നീ അഞ്ച് മൂലകളുമായി യോജിപ്പിക്കാം:



അഞ്ച് വരകൾ, ആറ് ത്രികോണങ്ങൾ. കോണുകളുടെ തുക $6 imes 180^\circ = 1080^\circ$

12 വശങ്ങളുള്ള ബഹുഭുജമായാലോ?

ചിത്രം വരയ്ക്കാതെ ആലോചിക്കാം. ഒരു മൂലയിൽ നിന്ന് തുടങ്ങിയാൽ, അതിന്റെ തൊട്ടപ്പുറത്തും ഇപ്പുറത്തുമുള്ള മൂലകളൊഴിച്ച്, മറ്റു 9 മൂലകളു മായും യോജിപ്പിച്ച് വരയ്ക്കാം. 9 വരകൾ, 10 ത്രികോണങ്ങൾ;

കോണുകളുടെ തുക $10 \times 180^{\circ} = 1800^{\circ}$

ഇക്കാര്യം ബീജഗണിതമുപയോഗിച്ച് പറയാം. n മൂലകൾ (വശങ്ങളും) ഉള്ള ബഹുഭുജത്തിൽ, ഒരു മൂല എടുത്തു കഴിഞ്ഞാൽ, ബാക്കി n-1 മൂലകളുണ്ട്. ഇവയിൽ ആദ്യമെടുത്ത മൂലയുടെ തൊട്ടിരുവശത്തുമുള്ള മൂലകളോഴിച്ച് മറ്റെല്ലാ മൂലകളുമായി യോജിപ്പിച്ചാൽ ആകെ (n-1)-2=n-3 വരകൾ.

ഓരോ വര വരയ്ക്കുമ്പോഴും ഒരു പുതിയ ത്രികോണവും, മിച്ചമൊരു ബഹുഭുജവും; അവസാനത്തെ വര വരയ്ക്കുമ്പോൾ, ഒരു ത്രികോണ വും, മിച്ചമൊരു ത്രികോണവും. ആകെ (n-3)+1=n-2 ത്രികോണങ്ങൾ, കോണുകളുടെ തുക $(n-2)\times 180^\circ$

n വശങ്ങളുള്ള ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക $(n-2) imes 180^{
m o}$ ആണ്.

ഇനി ഒരു ചോദ്യം.

ഏതെങ്കിലും ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 2700° ആകുമോ?

ഏതൊരു ബഹുഭുജത്തിന്റെയും കോണുകളുടെ തുക 180° യുടെ ഗുണിതമാണല്ലോ?

അപ്പോൾ 2700 എന്നത് 180 ന്റെ ഗുണിതമാണോ എന്ന് പരിശോധിച്ചാൽ മതി. അതിന് 2700 നെ 180 കൊണ്ട് ഹരി ച്ചുനോക്കണം.

$$2700 \div 180 = 15$$

അതായത്, $2700 = 180 \times 15$

നമ്മുടെ പൊതുതത്വമനുസരിച്ച്, 15+2=17 വശങ്ങളുള്ള ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 2700° ആണല്ലോ.

- (1) 52 വശങ്ങളുള്ള ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുകയെത്രയാണ്?
- (2) ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 8100° . അതിന് എത്ര വശങ്ങളുണ്ട്?

വേറൊരു വിഭജനം

ഒരു ബഹുഭുജത്തിന്റെ ഉള്ളിലെ ഒരു ബിന്ദു വിൽ നിന്ന് ശീർഷങ്ങളിലേക്ക് വരകൾ വരച്ചും അതിനെ ത്രികോണങ്ങളായി ഭാഗി ക്കാം.

n വശങ്ങളുള്ള ബഹുഭുജത്തിനെ ഇങ്ങനെ ഭാഗിച്ചാൽ, n ത്രികോണങ്ങൾ തന്നെ കിട്ടുമല്ലോ. ഇവയുടെ കോണുകളുടെ തുക $= n \times 180^\circ$.

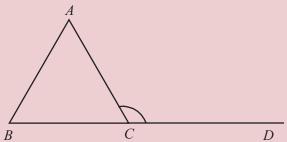
ഈ കോണുകളിൽ, എല്ലാ ത്രികോണങ്ങ ളുടെയും O യിലെ കോണുകളൊഴിച്ച്, മറ്റു ള്ള വയുടെ തുക, ബഹു ഭുജത്തിന്റെ കോണുകളുടെ തുക തന്നെയാണ്. O യിലെ കോണുകളുടെ തുക 360° ആണെന്ന് നേരത്തെ കണ്ടല്ലോ. അപ്പോൾ ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക.

 $(n \times 180^{\circ}) - (2 \times 180^{\circ}) = (n-2) \times 180^{\circ}$

- (3) ഏതെങ്കിലും ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 1600° ആകുമോ? 900° ആകുമോ?
- (4) 20 വശങ്ങളുള്ള ഒരു ബഹുഭുജത്തിന്റെ കോണുകളെല്ലാം തുല്യമാ ണ്. ഓരോ കോണും എത്ര ഡിഗ്രിയാണ്?
- (5) ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 1980°. വശങ്ങളുടെ എണ്ണം ഒന്നു കൂടുതലായ ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക എത്ര യാണ്? വശങ്ങളുടെ എണ്ണം ഒന്ന് കുറവായാലോ?

പുറംകോണുകൾ

ഒരു ത്രികോണം വരച്ച് ഏതെങ്കിലും ഒരു വശം ഒരു ഭാഗത്തേക്ക് നീട്ടി വരയ്ക്കുക. അപ്പോൾ ത്രികോണത്തിന്റെ പുറത്ത് ഒരു പുതിയ കോൺ കിട്ടിയില്ലേ?

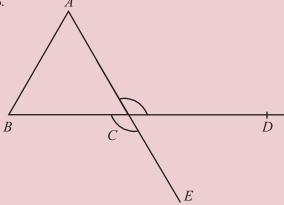


ഈ കോണിനെ ത്രികോണത്തിന്റെ ഒരു പുറംകോൺ, അല്ലെങ്കിൽ ബാഹ്യ കോൺ (external angle) എന്നാണ് പറയുന്നത്.

C എന്ന മൂലയിൽത്തന്നെ ത്രികോണത്തിന്റെ ഒരു കോണും ഉണ്ടല്ലോ. ഇതിനെ C യിലെ അകക്കോൺ അല്ലെങ്കിൽ ആന്തരകോൺ (interior angle) എന്നു പറയാം.

 $\angle ACD$ എന്ന പുറംകോണിന് $\angle ACB$ എന്ന കോണുമായി എന്താണ് ബന്ധം? ഇവ ഒരു രേഖീയജോടി ആയതിനാൽ, $\angle ACD=180^{\circ}-\angle ACB$.

ഇനി AC എന്ന വശം നീട്ടിയാൽ C യിൽത്തന്നെ മറ്റൊരു പുറംകോൺ $\angle BCE$ കിട്ടും. A

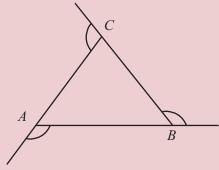


ഈ രണ്ട് പുറംകോണുകൾ തമ്മിലെന്തെങ്കിലും ബന്ധമുണ്ടോ? AE യും BD യും മുറിച്ചു കടക്കുമ്പോൾ ഉണ്ടാകുന്ന ഒരു ജോടി എതിർകോണു കളാണ് ഇവ. അതിനാൽ $\angle ACD = \angle BCE$.

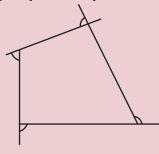
അതായത്, ഒരു ശീർഷത്തിലെ രണ്ട് പുറംകോണുകളും തുല്യമാണ്.

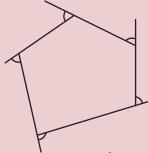
അപ്പോൾ ഒരു മൂലയിലെ പുറംകോണുകളുടെ അളവുകളെക്കുറിച്ച് മാത്രം പറയുമ്പോൾ ഇവയിൽ ഏതാണെന്ന പ്രശ്നമില്ല.

ത്രികോണത്തിന്റെ മൂന്ന് മൂലകളിലും പുറംകോണുകൾ വരയ്ക്കാം.



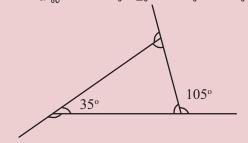
ഇതുപോലെ ചതുർഭുജത്തിന്റെയും പഞ്ചഭുജത്തിന്റെയും ഓരോ മൂല യിലും പുറംകോണുകൾ വരയ്ക്കാം.





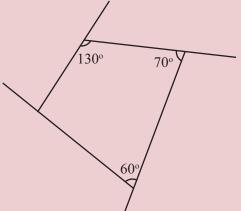
ഓരോ മൂലയിലും അകക്കോണും പുറംകോണും രേഖീയജോടിയല്ലേ?

- (1) ഒരു ത്രികോണത്തിന്റെ രണ്ടു കോണുകൾ 40°, 60°. അതിന്റെ എല്ലാ പുറംകോണുകളുടെയും അളവുകൾ കണ്ടുപിടിക്കുക.
- (2) ചിത്രത്തിലെ എല്ലാ കോണുകളും കണ്ടുപിടിക്കുക.

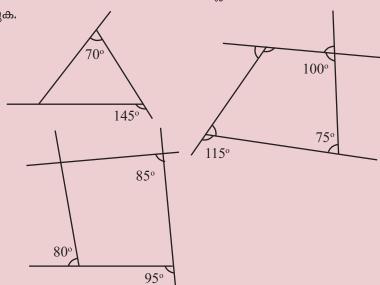


ഗണിതം

(3) ചിത്രത്തിലെ ചതുർഭുജത്തിന്റെ എല്ലാ പുറംകോണുകളും കണ്ടുപി ടിക്കുക.



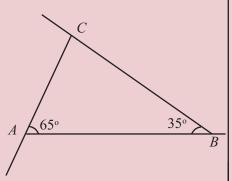
(4) ചുവടെ കൊടുത്ത ചിത്രങ്ങളിലെ എല്ലാ കോണുകളും കണ്ടുപിടി ക്കുക.



(5) ഏതൊരു ത്രികോണത്തിലും ഒരു മൂലയിലെ പുറംകോൺ, മറ്റ് രണ്ട് മൂലകളിലെ അകക്കോണുകളുടെ തുകയ്ക്ക് തുല്യമാണെന്ന് തെളി യിക്കുക.

മാറാത്ത തുക

ഏതു ബഹുഭുജത്തിലും അകക്കോണു കളുടെ തുക കണക്കാക്കാൻ വശങ്ങ ളുടെ എണ്ണം അറിഞ്ഞാൽ മതി. പുറം കോണുകളുടെ തുകയോ? ത്രികോണത്തിൽ നിന്നു തുടങ്ങാം. ചിത്രത്തിലെ പുറംകോണുകളെല്ലാം കണ്ടുപിടിക്കാമോ?



A യിലെ പുറംകോൺ, $180^{\circ} - 65^{\circ} = 115^{\circ}$

B യിലേത് $180^{\circ} - 35^{\circ} = 145^{\circ}$

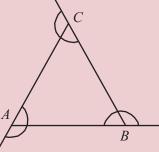
C യിലെ അകക്കോൺ $180^{\circ} - (65^{\circ} + 35^{\circ}) = 180^{\circ} - 100^{\circ}$ $= 80^{\circ}$

C യിലെ പുറംകോൺ $180^{\circ} - 80^{\circ} = 100^{\circ}$

പുറംകോണുകളുടെ തുക

$$115^{\circ} + 145^{\circ} + 100^{\circ} = 360^{\circ}$$

എല്ലാ ത്രികോണങ്ങളിലും പുറംകോണുകളുടെ തുക 360° തന്നെയാണോ? ഈ ചിത്രം നോക്കൂ.



A

ത്രികോണത്തിലെ A എന്ന മൂലയിലെ അകക്കോണും പുറം കോണും കൂട്ടിയാൽ 180° കിട്ടുമല്ലോ. ഇതുപോലെ Bയിലും C യിലും 180° കിട്ടും. അപ്പോൾ മൂന്നു മൂലകളി ലെയും അകക്കോണും പുറംകോണും എല്ലാം കൂട്ടിയാൽ

$$3 \times 180^{\circ} = 540^{\circ}$$

ഇതിൽ ത്രികോണത്തിലെ മൂന്ന് കോണുകളുടെ തുക

അപ്പോൾ പുറംകോണുകൾ മാത്രം കൂട്ടിയാൽ $540^{\circ} - 180^{\circ} = 360^{\circ}$.

ഏതു ത്രികോണത്തിലും പുറംകോണുകളുടെ തുക 360°.

ചതുർഭുജമായാലോ? ഓരോ മൂലയിലെയും അകക്കോണിന്റെയും പുറംകോണി ന്റെയും തുക 180° ആണ്. നാല് ശീർഷങ്ങളിലുംകൂടി

$$4 \times 180^{\circ} = 720^{\circ}$$

ഇതിൽനിന്ന് ചതുർഭുജത്തിന്റെ കോണുകളുടെ തുക 360° കുറച്ചാൽ

$$720^{\circ} - 360^{\circ} = 360^{\circ}$$
.

ഈർക്കിൽക്കണക്ക്

ഈർക്കിൽക്കഷണങ്ങളു പയോഗിച്ച്, ചുവടെ കാണുന്നതുപോലെ ഒരു ത്രികോ ണമുണ്ടാക്കി, കോണുകൾ വരച്ചടയാളപ്പെ ടുത്തുക.

ഇതിനു മുകളിൽ മറ്റു മൂന്നു ഈർക്കി ലുകൾ നേരത്തെ വച്ചതിനു സമാന്തര മായി വച്ച്, അൽപം കൂടി ചെറിയ ത്രികോണമുണ്ടാ

ഇപ്പോഴും കോണുകൾ മാറിയിട്ടില്ലല്ലോ. അൽപം കൂടി ചെറുതാക്കിയാലോ?

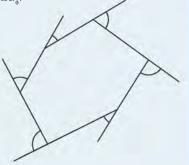
അവസാനം ത്രികോണമേ ഇല്ലാതായാലോ?

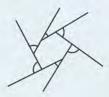
ഈ ചിത്രത്തിൽ, അടയാളപ്പെടുത്തിയിരി ക്കുന്ന കോണുകളുടെ തുകയെന്താണ്? അപ്പോൾ ആദ്യചിത്രത്തിലെയോ?

ചതുർഭുജത്തിന്റെയും പുറംകോണുകളുടെ തുക 360° തന്നെ. പഞ്ചഭുജത്തിലും ഷഡ്ഭുജത്തിലും ഇതുപോലെ കണക്കാക്കി നോക്കൂ.

ചുരുങ്ങിച്ചുരുങ്ങി

കോണുകൾ മാറാതെ ത്രികോണത്തെ ചുരുക്കിയതുപോലെ, ഏതു ബഹുഭുജ ത്തിനെയും ചുരുക്കാം. ഈ ചിത്രങ്ങൾ നോക്കു.





ഒടുവിൽ ബഹുഭുജം തന്നെ ഇല്ലാതായി ഒരു ബിന്ദു മാത്രമാകുമ്പോഴോ?

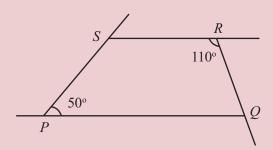
ബഹുഭുജത്തിന്റെ ബാഹ്യകോണുകളുടെ തുകയോ? പൊതുവായി n വശമുള്ള ബഹുഭുജത്തെക്കുറിച്ച് ആലോ ചിക്കാം. ആകെ n മൂലകൾ. ഓരോ മൂലയിലും ഒരു പുറംകോണും ബഹുഭുജത്തിലെ കോണും ചേർന്ന് ഒരു രേഖീയജോടി; ആകെ n രേഖീയജോടികൾ. ഈ കോണു കളുടെയെല്ലാം തുക $n \times 180^\circ$. ഇതിൽ അകക്കോണുക ളുടെ തുക $(n-2) \times 180^\circ$. അപ്പോൾ പുറംകോണുകളുടെ തുക

$$= n \times 180^{\circ} - (n-2) \times 180^{\circ}$$
$$= 2 \times 180^{\circ}$$
$$= 360^{\circ}$$

അതായത്,

ഏത് ബഹുഭുജത്തിലും പുറംകോണുകളുടെ തുക 360° ആണ്.

- (1) 18 വശങ്ങളുള്ള ഒരു ബഹുഭുജത്തിന്റെ കോണു കളെല്ലാം തുല്യമാണ്. ഓരോ പുറംകോണും എത്രയാണ്?
- (2) *PQRS* എന്ന ചതുർഭുജത്തിൽ *PQ*, *RS* എന്നീ വശങ്ങൾ സമാന്തരമാണ്. ചതുർഭുജത്തിന്റെ എല്ലാ കോണുകളും പുറംകോണുകളും കണ്ടുപിടിക്കുക.



(3) ഒരു ചതുർഭുജം വരച്ച്, ഏതെങ്കിലും രണ്ടു മൂലകളിലെ പുറംകോണുകൾ അടയാളപ്പെടുത്തുക. ഇവയുടെ തുക യും, മറ്റു രണ്ടു മൂലകളിലെ അകക്കോണുകളുടെ തുകയും തമ്മിലെത്തെങ്കിലും ബന്ധമുണ്ടോ?

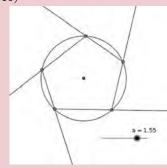
- (4) കോണുകളെല്ലാം തുല്യമായ ഒരു ബഹുഭുജത്തിന്റെ ഒരു ബാഹ്യകോൺ, ബഹുഭുജത്തിന്റെ ഒരു അകക്കോ ണിന്റെ രണ്ട് മടങ്ങാണ്.
 - i) അതിലെ ഓരോ കോണും എത്ര ഡിഗ്രിയാണ്?
 - ii) അതിന് എത്ര വശങ്ങളുണ്ട്?
- (5) ഒരു ബഹുഭുജത്തിന്റെ പുറംകോണുകളുടെ തുക അക ക്കോണുകളുടെ തുകയുടെ രണ്ട് മടങ്ങാണ്. ആ ബഹു ഭുജത്തിന് എത്ര വശങ്ങൾ ഉണ്ട്? പുറം കോണുക ളുടെ തുക, അകക്കോണുകളുടെ തുകയുടെ പകുതി യാണെങ്കിലോ? തുകകൾ തുല്യമാണെങ്കിലോ?

സമബഹുഭുജങ്ങൾ

ഒരു ത്രികോണത്തിലെ കോണുകളെല്ലാം തുല്യമാണെ ങ്കിൽ ഓരോ കോണും എത്രയാണ്?

കോണുകളെല്ലാം തുല്യമായതിനാൽ ത്രികോണത്തിന്റെ വശങ്ങളുടെ നീളവും തുല്യമാണ്. (തുല്യ ത്രികോണങ്ങൾ എന്ന പാഠത്തിൽ സമപാർശ്വത്രികോണങ്ങൾ എന്ന ഭാഗം) മറിച്ച്, ഒരു ത്രികോണത്തിലെ വശങ്ങളെല്ലാം തുല്യമാ യാലോ? കോണുകളും തുല്യമാണ്. ഇത്തരം ത്രികോണ ങ്ങളാണല്ലോ സമഭുജത്രികോണങ്ങൾ.

min = 0.01, max = 2, increment = 0.01 ആകത്തക്കവിധം സ്ലൈഡർ a നിർമിക്കുക. ആരം a ആയി ഒരു വൃത്തം വരച്ച് അതിൽ അഞ്ചോ ആറോ കുത്തുകളിടുക. ഈ കുത്തുകൾ ചിത്രത്തിൽ കാണുന്നതു പോലെ യോജിപ്പിക്കുക. (ray tool ഉപയോഗിക്കാം)



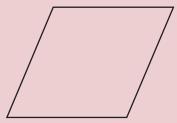
ഇനി വൃത്തം മറച്ചു വയ്ക്കാം. Angle എടുത്ത് പുറംകോണുകൾ അടയാളപ്പെടു ത്തുക. a എന്ന സംഖ്യ മാറ്റി നോക്കു.

ഒരു ചതുർഭുജത്തിന്റെ കോണുകളെല്ലാം തുല്യമാണെങ്കിൽ വശങ്ങളുടെ നീളവും തുല്യമാകണമെന്നുണ്ടോ?

ചതുരത്തിലെ കോണുകളെല്ലാം തുല്യമാണ്. വശങ്ങൾ തുല്യമാകണ മെന്നില്ല. വശങ്ങളുടെ നീളവും തുല്യമായാൽ സമചതുരമായി.

മറിച്ച്, ഒരു ചതുർഭുജത്തിന്റെ വശങ്ങളെല്ലാം തുല്യമായാൽ കോണു കൾ തുല്യമാകണമെന്നുണ്ടോ?

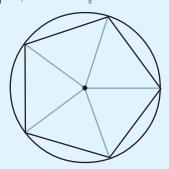
വശങ്ങൾ തുല്യമായ സാമാന്ത രികത്തിന്റെ കോണുകൾ തുല്യ മാകണമെന്നില്ലല്ലോ?



കോണുകളും തുല്യമായാൽ സമചതുരം തന്നെ.

വൃത്തവും സമബഹുഭുജങ്ങളും

വൃത്തത്തിനുള്ളിൽ സമപഞ്ചഭുജവും, സമ ഷഡ്ഭുജവും വരച്ചത് ഓർമയുണ്ടോ? വൃത്ത കേന്ദ്രത്തിൽ, 72° കോണു കൾ വരച്ചാൽ, സമപഞ്ചഭുജം വരയ്ക്കാം.



ഇതുപോലെ സമഷഡ്ഭുജം വരയ്ക്കാൻ കോണുകൾ എത്രയായി എടുക്കണം? സമ അഷ്ടഭുജത്തിനോ?

ജ്യാമിതിപ്പെട്ടിയിലെ മട്ടങ്ങൾ ഉപയോഗിച്ച്, വൃത്തത്തെ പല പല രീതിയിൽ സമഭാഗ ങ്ങളാക്കാമല്ലോ.

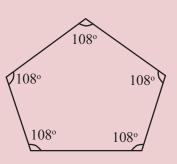
മട്ടങ്ങൾ ഉപയോഗിച്ച് ഏതെല്ലാം സമബഹു ഭുജങ്ങൾ വരയ്ക്കാം?

24 വശങ്ങളുള്ള സമബഹുഭുജം വരയ്ക്കാൻ കഴിയുമോ? അതായത്, വശങ്ങൾ തുല്യവും കോണുകൾ തുല്യവുമായ ചതുർഭുജമാണ് സമചതുരം.

ഒരു പഞ്ചഭുജത്തിന്റെ കോണുകളെല്ലാം തുല്യമാണെങ്കിൽ ഓരോ കോണും എത്രയാണ്?

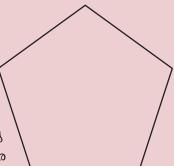
പഞ്ചഭുജത്തിന്റെ കോണുകളുടെ തുക $3 \times 180^{\circ} = 540^{\circ}$ ആണല്ലോ.

അതിനാൽ ഒരു കോണിന്റെ അളവ് $\frac{540}{5} = 108^\circ$ എന്ന് കിട്ടും. അപ്പോൾ കോണുകൾ തുല്യമായ പഞ്ചഭുജം വര യ്ക്കാൻ ഓരോ ശീർഷത്തിലും 108° കോൺ വരത്ത ക്കവിധം വരച്ചാൽ മതിയല്ലോ.



ഇതിൽ വശങ്ങളെല്ലാം തുല്യമാകണമെന്നുണ്ടോ?

കോണുകൾ തുല്യവും വശ ങ്ങൾ തുല്യവുമായ പഞ്ച ഭുജവും വരയ്ക്കാം. ഇത്തരം പഞ്ചഭുജഭുമാണ് സമപഞ്ചഭുജം.

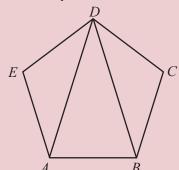


ഇതുപോലെ കോണുകളും വശങ്ങളും തുല്യ മായ ഷഡ്ഭുജം (സമഷഡ്ഭുജം) വര യ്ക്കാമല്ലോ?

വശങ്ങൾ തുല്യവും കോണുകൾ തുല്യവുമായ ബഹുഭുജങ്ങളെ സമബ ഹുഭുജങ്ങൾ (regular polygons) എന്നാണ് പറയുന്നത്.

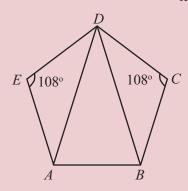
ഈ ചിത്രം നോക്കൂ.

Regular Polygon എടുത്ത് രണ്ടു ബിന്ദുക്ക ളിൽ ക്ലിക്ക് ചെയ്യുക. മൂലകളുടെ എണ്ണം (വശങ്ങളുടെ എണ്ണം) നൽകി OK കൊടു ക്കുക.

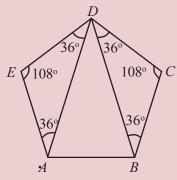


ABCDE ഒരു സമപഞ്ചഭുജമാണ്. D എന്ന മൂലയിലെ മൂന്നു കോണുകളും കണക്കാക്കാമോ?

സമപഞ്ചഭുജമായതിനാൽ, കോണുകളെല്ലാം 108°

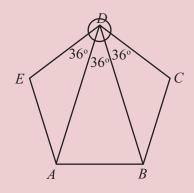


 ΔAED യും ΔBCD യും സമപാർശ്വ ത്രികോണങ്ങളാണ്. (എന്തുകൊണ്ട്?) അപ്പോൾ അവയുടെ മറ്റു രണ്ടു കോണു കളും കണക്കാക്കാമല്ലോ. (എങ്ങനെ?)



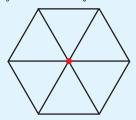
D എന്ന മൂലയിലെ മൂന്നു കോണുകളും കൂട്ടിയാൽ 108° ; അപ്പോൾ ഇനി മിച്ചമുള്ള കോണോ?

$$\angle ADB = 108^{\circ} - (36^{\circ} + 36^{\circ}) = 36^{\circ}.$$



ചേർത്ത് വയ്ക്കാം

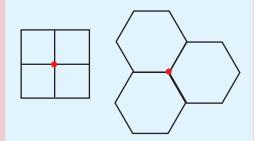
ചിത്രത്തിൽ 6 തുല്യ സമഭുജത്രികോണ ങ്ങൾ ഒരു ബിന്ദുവിന് ചുറ്റുമായി ചേർത്ത് വച്ചിരിക്കുന്നത് നോക്കൂ.



ഇതുപോലെ മറ്റ് ഏതെല്ലാം തുല്യമായ സമബഹുഭുജങ്ങൾ ഒരു ബിന്ദുവിന് ചുറ്റും ഇങ്ങനെ ചേർത്തു വയ്ക്കാം.

ഒരു ബിന്ദുവിന് ചുറ്റുമുള്ള കോൺ 360° ആണല്ലോ. തുല്യമായ സമബഹുഭുജങ്ങൾ ഒരു ബിന്ദുവിന് ചുറ്റും ചേർത്തു വയ്ക്കാൻ, ബഹുഭുജത്തിന്റെ കോണിന്റെ അളവ് 360 ന്റെ ഘടകം ആയിരിക്കണം.

ചിത്രം നോക്കൂ.



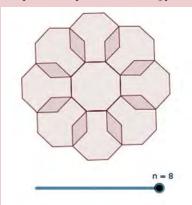
ഇനി ഏതെങ്കിലും സമബഹുഭുജങ്ങ ളുണ്ടോ?

സമബഹുഭുജങ്ങളല്ലെങ്കിലോ?

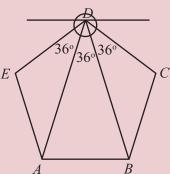
അങ്ങനെ, AD, BD എന്നീ വരകൾ പഞ്ചഭുജത്തിലെ D എന്ന മൂലയിലെ കോണിനെ മൂന്നു സമഭാഗങ്ങളാക്കുന്നു എന്നു കാണാം.

ഇനി ഈ ചിത്രത്തിൽത്തന്നെ, AB യ്ക്ക് സമാന്തരമായി D യിലൂടെ ഒരു വര വരച്ചു നോക്കൂ.

Slider എടുത്ത് അതിൽ Integer ക്ലിക്ക് ചെയ്താൽ n എന്ന് കിട്ടും. (Integer എന്നാൽ പൂർണസംഖൃ എന്നർഥം) min = 3, max = 8 എന്നെടുക്കുക. n എന്ന സംഖൃ 8 എന്നെടുക്കുമ്പോൾ 8 വശമുള്ള സമബഹുഭുജം ലഭിക്കും. Reflect about Line എടുത്ത് ബഹുഭുജത്തിനുള്ളിലും ഒരു വശത്തിലും ക്ലിക്ക് ചെയ്യുക. ഇങ്ങനെ ഓരോ വശത്തിലും ചെയ്താൽ ചുവടെ കൊടുത്തിരിക്കുന്ന ചിത്രം കിട്ടും.



n എന്ന സംഖ്യ 6 ൽ കുറയുമ്പോൾ ചിത്ര ത്തിന് എന്ത് പ്രത്യേകതയാണ്? 6 ൽ കൂടു മ്പോഴോ? 6 ആകുമ്പോഴോ?



ഇപ്പോൾ D യിലുണ്ടായ രണ്ടു പുതിയ കോണുകളും $36^{\rm o}$ തന്നെയല്ലേ? എന്തുകൊണ്ട്?

മറ്റൊരു ചോദ്യം:

ഒരു സമബഹുഭുജത്തിന്റെ ഒരു കോൺ 144° ആണ്. അതിനെത്ര വശങ്ങളുണ്ട്?

ഓരോ കോണും 144°. അപ്പോൾ, ഓരോ പുറംകോണും 36°.

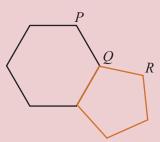
പുറംകോണുകളുടെ തുക 360° ആയതിനാൽ വശങ്ങളുടെ

എണ്ണം
$$\frac{360^{\circ}}{36^{\circ}} = 10$$

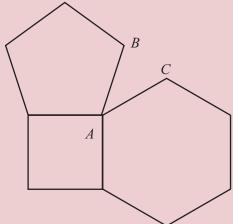
അതായത്, ഈ സമബഹുഭുജത്തിന് 10 വശങ്ങളുണ്ട്.

- (1) വശങ്ങൾ തുല്യവും കോണുകൾ വ്യത്യസ്തവുമായ ഒരു ഷഡ്ഭുജം വരയ്ക്കുക.
- (2) കോണുകൾ എല്ലാം തുല്യവും വശങ്ങൾ വ്യത്യസ്തവുമായ ഒരു ഷഡ്ഭുജം വരയ്ക്കുക.
- (3) 15 വശങ്ങളുള്ള ഒരു സമബഹുഭുജത്തിന്റെ ഓരോ കോണും എത്ര ഡിഗ്രിയാണ്? പുറംകോണോ?
- (4) ഒരു സമബഹുഭുജത്തിന്റെ ഒരു കോൺ 168°. അതിന് എത്ര വശങ്ങ ളുണ്ട്?
- (5) പുറംകോണുകളെല്ലാം 6° ആയ സമബഹുഭുജം വരയ്ക്കാമോ? 7° ആയാലോ?

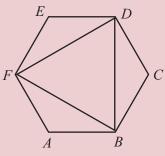
(6) ചിത്രത്തിൽ ഒരു സമപഞ്ചഭുജവും ഒരു സമഷഡ്ഭുജവും ചേർത്തു വച്ചിരിക്കു ന്നു. $\angle PQR$ എത്ര ഡിഗ്രിയാണ്?



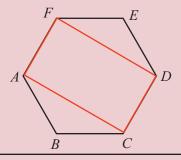
(7) ചിത്രത്തിൽ സമചതുരവും, സമപഞ്ചഭുജവും, സമഷഡ്ഭുജവും ചേർത്തു വരച്ചിരിക്കുന്നത് നോക്കൂ. $\angle BAC$ എത്ര ഡിഗ്രിയാണ്?



(8) ചിത്രത്തിൽ *ABCDEF* ഒരു സമഷഡ്ഭുജമാണ്. ഇതിലെ ഒന്നിടവിട്ട മൂലകൾ യോജിപ്പിച്ചാൽ കിട്ടുന്ന ത്രികോണം സമഭുജ്യതികോണമാണെന്ന് തെളിയിക്കുക.



(9) ചിത്രത്തിൽ ABCDEF ഒരു സമഷഡ്ഭുജമാണ്. ACDFഒരു ചതുരമാണെന്ന് തെളിയിക്കുക.



കോമ്പസ്

മട്ടങ്ങളോ, കോൺമാപിനിയോ ഉപയോ ഗിച്ചു കോണുകൾ അളക്കാതെ, കോമ്പസ് ഉപയോഗിച്ചും സമബഹുഭുജങ്ങൾ വര യ്ക്കാം. ഇങ്ങനെ സമഭുജത്രികോണവും, സമചതുരവും, സമഷഡ്ഭുജവും വരയ്ക്കു ന്നത് പല ക്ലാസുകളിലായി കണ്ടിട്ടു ണ്ടല്ലോ.

കോമ്പസ് ഉപയോഗിച്ച് സമപഞ്ചഭുജം വര യ്ക്കാൻ പല മാർഗങ്ങളുമുണ്ട്. ലളിതമായ ഒരു മാർഗം.

www.cut-the-knot.org/pythagoras/ PentagonConstruction

എന്ന വെബ്പേജിലുണ്ട്. കോമ്പസും സ്കെയിലും മാത്രം ഉപയോഗിച്ച് 17 വശ

ങ്ങളുള്ള സമബഹു ഭുജം വരയ്ക്കാമെന്ന്, പ്രസിദ്ധ ഗണിതശാ സ്ത്രജ്ഞനായ ഗൗസ് അദ്ദേഹത്തിന്റെ പത്തൊമ്പതാം വയ സിൽ തെളിയിച്ചു. ഇതി നെ ക്കു റി ച്ചുള്ള

കൂടുതൽ വിവരങ്ങൾ

en.wikipedia.org/wiki/Heptadecagon എന്ന വെബ്പേജിലുണ്ട്.

തിരിഞ്ഞുനോക്കുമ്പോൾ

പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
 ബഹുഭുജത്തിലെ കോണുകളുടെ തുക കാണു ന്നതിനുള്ള വിവിധ മാർഗങ്ങൾ വിശദീകരി ക്കുന്നു. 			
 ബഹുഭുജത്തിലെ പുറംകോണുകളും അക ക്കോണുകളും തമ്മിലുള്ള ബന്ധം വിശദീക രിക്കുന്നു 			
 പുറംകോണുകളുടെ തുക കണ്ടുപിടിക്കാനുള്ള മാർഗം വിശദീകരിക്കുന്നു. 			
 ബഹുഭുജങ്ങളിൽ നിന്ന് സമബഹുഭുജങ്ങളെ തിരിച്ചറിയുന്നു. 			
 കോണളവ് ഉപയോഗിച്ച് സമബഹുഭുജങ്ങ ളുടെ വശങ്ങളുടെ എണ്ണം കണ്ടെത്തുന്നു. 			

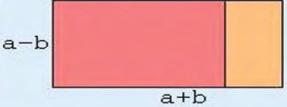
അർവസമവാക്യങ്ങൾ

	7 = 4 + 3			
	4 × 2	3 × 2		
3 = 2 + 1	4 × 1	3 × 1		

ь	
	b
a	
	Į.

a b

(i) 983 ² -17 ²	
(a) $(a+b)^2 = a^2 + 2ab + b^2$ (b) $(a-b)^2 = a^2 - 2ab + b^2$ (c) $(a+b)(a-b) = a^2 - b^2$	- 9
(b) $(x+a)(x+b) = x^2 + (a+b)x + ab$ $a^2 - b^2 = (a+b)(a$	
	N de

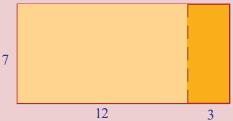


തുകകളുടെ ഗുണനം

ഒരു ചതുരത്തിന്റെ നീളം 12 സെന്റിമീ റ്റർ, വീതി 7 സെന്റിമീറ്റർ. പരപ്പളവ് എത്രയാണ്?

12

നീളം 3 സെന്റിമീറ്റർ കൂട്ടി ചതുരം അൽപം വലുതാക്കി.



പരപ്പളവ് എത്ര കൂടി?

ആദ്യത്തെ പരപ്പളവ് 84. വലുതാക്കിയപ്പോൾ പരപ്പളവ് $15 \times 7 = 105$. കൂടിയത് 105 - 84 = 21 എന്നിങ്ങനെ കണക്കാക്കാം.

ഗുണനഫലങ്ങൾ വെവ്വേറെ കണക്കാക്കാതെയും ഇതു ചെയ്യാം.

$$(12+3) \times 7 = (12 \times 7) + (3 \times 7) = (12 \times 7) + 21$$

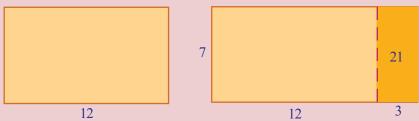
കൂടിയത് 21 ആണെന്ന് ഇതിൽ നിന്ന് കാണാമല്ലോ.

സർവസമവാക്യം

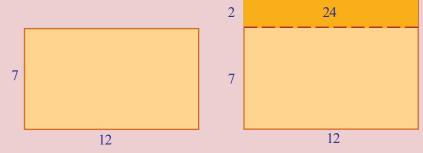
7

2x+3=3x+2 എന്ന സമവാക്യം, x എന്ന സംഖ്യ 1 ആയി എടുത്താൽ മാത്രമാണ് ശരിയാകുക. x+(x+1)=2x+1എന്ന സമവാക്യമോ?

x ആയി ഏത് സംഖ്യ എടുത്താലും ശരിയാകും. എല്ലാ സംഖ്യകൾക്കും ശരിയാകുന്ന സമവാകത്തെ സർവസമവാക്യം (identity) എന്നാണ് പറയുന്നത്.



ഇനി ആദ്യത്തെ ചതുരത്തിൽ, നീളം 3 സെന്റിമീറ്റർ കൂട്ടുന്നതിനു പകരം, വീതിയാണ് 2 സെന്റിമീറ്റർ കൂട്ടിയതെങ്കിലോ? 12

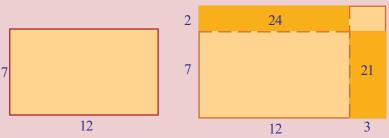


ഇപ്പോൾ ചെയ്തതുപോലെ, പരപ്പളവ് എത്ര കൂടിയെന്നു കണക്കാക്കാം:

$$12 \times (7+2) = (12 \times 7) + (12 \times 2) = (12 \times 7) + 24$$

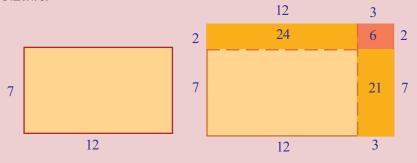
അപ്പോൾ, കൂടിയത് 24.

ഇനി നീളം 3 സെന്റിമീറ്ററും, വീതി 2 സെന്റിമീറ്ററും കൂട്ടിയാലോ?



നേരത്തെ കണ്ടതുപോലെ, നീളം കൂട്ടിയപ്പോൾ പരപ്പളവ് കൂടിയത് 21; വീതി കൂട്ടിയപ്പോൾ, പരപ്പളവ് കൂടിയത് 24; ആകെ കൂടിയത് 21+24=45 എന്നു കണക്കാക്കാം.

പക്ഷെ ചതുരമായില്ലല്ലോ. അതിന് മൂലയിൽ ഒരു ചെറുചതുരം കൂടി വേണം.



വലിയ ചതുരമാകുമ്പോൾ പരപ്പളവ് കൂടിയത് 21+24+6=51

ഇത് മറ്റൊരു തരത്തിൽ പറയാം. ആദ്യത്തെ ചതുരത്തിന്റെ പരപ്പളവ് 12×7 ഉം, ഇപ്പോഴത്തെ ചതുരത്തിന്റെ പരപ്പളവ് 15×9 ഉം ആണല്ലോ. ആദ്യത്തെ ഗുണനഫലത്തിൽ നിന്ന് രണ്ടാമത്തെ ഗുണനഫല ത്തിലെത്താൻ എന്തെല്ലാമാണ് കൂട്ടിയത്?

$$15 \times 9 = (12 \times 7) + 24 + 21 + 6$$

കൂട്ടിയതെല്ലാം ഗുണനങ്ങളായി എഴുതിയാലോ?

$$15 \times 9 = (12 \times 7) + (12 \times 2) + (3 \times 7) + (3 \times 2)$$

അതായത്

$$(12+3) \times (7+2) = (12 \times 7) + (12 \times 2) + (3 \times 7) + (3 \times 2)$$

ഇവിടെ ചെയ്തത് എന്താണ്?

 12×7 നെ 15×9 ആക്കാൻ,

- 15×9 നെ $(12+3) \times (7+2)$ എന്ന് പിരിച്ചെഴുതി.
- 12 കൊണ്ട് 7 നെയും 2 നെയും ഗുണിച്ചു;

- 3 കെണ്ട് 7 നെയും 2 നെയും ഗുണിച്ചു.
- അതെല്ലാം കൂട്ടി.

ഇതുപോലെ 13×15 നെ 14×16 ആക്കാൻ എന്ത് കൂട്ടണമെന്നു നോക്കാം.

$$14 \times 16 = (13+1) \times (15+1)$$
$$= (13 \times 15) + (13 \times 1) + (1 \times 15) + (1 \times 1)$$

അതായത്, കൂട്ടേണ്ടത് 13 + 15 + 1 = 29.

രണ്ടു കണക്കിലും ഒരു തുകയെ മറ്റൊരു തുകകൊണ്ട് ഗുണിക്കുകയാ ണല്ലോ ചെയ്തത്. ഇതിനുള്ള പൊതുവായ രീതി എന്താണ്?

അധിസംഖ്യകളുടെ തുകയെ തുക കൊണ്ടു ഗുണിക്കാൻ, ആദ്യത്തെ തുകയിലെ ഓരോ സംഖ്യയേയും രണ്ടാമത്തെ തുക യിലെ ഓരോ സംഖ്യകൊണ്ടും ഗുണിച്ച്, കൂട്ടണം.

ഇതുപയോഗിച്ച്, 26×74 ചെയ്തുനോക്കാം.

$$26 \times 74 = (20 + 6) \times (70 + 4)$$

$$= (20 \times 70) + (20 \times 4) + (6 \times 70) + (6 \times 4)$$

$$= 1400 + 80 + 420 + 24$$

$$= 1924$$

ഗുണനക്രിയ

 24×36 സാധാരണരീതിയിൽ കണക്കാക്കു ന്നതെങ്ങനെ?

ഇതിലെ ഓരോ വരിയിലെയും ഗുണനഫ ലങ്ങൾ കിട്ടിയത് എങ്ങനെയാണ്?

$$\begin{array}{r}
24 \times \\
36 \\
\hline
144 \longrightarrow 6 \times (4+20) = 24+120 \\
720 \longrightarrow 30 \times (4+20) = 120+600 \\
\hline
864
\end{array}$$

 103×205 ആയാലോ?

$$103 \times 205 = (100 + 3) (200 + 5)$$

$$= (100 \times 200) + (100 \times 5) + (3 \times 200) + (3 \times 5)$$

$$= 20000 + 500 + 600 + 15$$

$$= 21115$$

ഇനി തുകകളുടെ ഗുണനത്തെക്കുറിച്ചു പറഞ്ഞ കാര്യം ബീജഗണിതത്തിൽ എഴുതാം.

ആദ്യത്തെ തുക x+y എന്നും, രണ്ടാമത്തെ തുക u+v എന്നും എടുക്കാം, ഇവയുടെഗുണനഫലം കണ്ടുപിടിക്കാൻ, $xu,\ xv,\ yu,\ yv$ ഇവ യെല്ലാം കൂട്ടണം. അപ്പോൾ മുകളിലെഴുതിയ പൊതുതത്വം ഇങ്ങനെയാകും.

x, y, u, v എന്ന ഏതു നാല് അധിസംഖൃകളെടുത്താലും (x + y) (u + v) = xu + xv + yu + yv

ഒരു കണക്കു കൂടി:

$$6\frac{1}{2} \times 8\frac{1}{3} = \left(6 + \frac{1}{2}\right) \times \left(8 + \frac{1}{3}\right)$$

$$= \left(6 \times 8\right) + \left(6 \times \frac{1}{3}\right) + \left(\frac{1}{2} \times 8\right) + \left(\frac{1}{2} \times \frac{1}{3}\right)$$

$$= 48 + 2 + 4 + \frac{1}{6}$$

$$= 54\frac{1}{6}$$

മറ്റൊരു കണക്ക് നോക്കാം. കലണ്ടറിലെ സംഖ്യകളുടെ തുകകളെക്കുറി ച്ചുള്ള ചില രസകരമായ കാര്യങ്ങൾ ഏഴാം ക്ലാസിൽ കണ്ടിട്ടുണ്ട്. (മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിലെ, കല ണ്ടർ കണക്ക്, മറ്റൊരു കലണ്ടർ കണക്ക് എന്നീ ഭാഗങ്ങൾ). ഇനി അവ യുടെ ഗുണനഫലങ്ങളെക്കുറിച്ചുള്ള ഒരു കണക്ക് നോക്കാം.

കലണ്ടറിലെ ഏതെങ്കിലും ഒരു മാസമെടുത്ത്, ഒരു സമചതുരത്തിൽ വരുന്ന നാലു സംഖൃകൾ അടയാളപ്പെടുത്തുക.

ഞായർ	തിങ്കൾ	ചാവ്വ	ബുധൻ	വ്യാഴം	വെള്ളി	ശനി
			1	2	3	4
5	6	7	8	9	10	11
12	13	14)	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

കോണോടുകോൺ വരുന്ന സംഖ്യകൾ ഗുണിച്ചു നോക്കൂ.

$$14 \times 6 = 84$$

$$13 \times 7 = 91$$

ഇവയുടെ വൃത്യാസം

$$91 - 84 = 7$$

ഇതുപോലെ സമചതുരത്തിനുള്ളിൽ വരുന്ന മറ്റു നാലു സംഖൃകൾ എടുത്തു നോക്കൂ.

$$22 \times 30 = 660$$

$$23 \times 29 = 667$$

$$667 - 660 = 7$$

വ്യത്യാസം എപ്പോഴും 7 തന്നെയാകാൻ കാരണമെന്താണ്? ബീജഗണിതം ഉപയോഗിച്ചു നോക്കാം:

സമചതുരത്തിലെ ആദ്യത്തെ സംഖ്യ x എന്നെടുത്താൽ, നാലു സംഖ്യകൾ ഇങ്ങനെ എഴുതാം.

х	x + 1
<i>x</i> + 7	x + 8

(ഏഴാം ക്ലാസിൽ മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠ ത്തിലെ കലണ്ടർ കണക്ക് എന്ന ഭാഗത്ത് ഇതു കണ്ടതാണല്ലോ.)

കോണോടുകോൺ വരുന്ന സംഖൃകൾ ഗുണിച്ചാലോ?

$$x(x+8) = x^2 + 8x$$

(x+1) (x+7) എന്ന ഗുണനത്തെ എങ്ങനെ പിരിച്ചെഴുതാം?

$$(x + 1) (x + 7) = x^2 + 7x + x + 7 = x^2 + 8x + 7$$

രണ്ടു ഗുണനഫലങ്ങളും നോക്കൂ; വ്യത്യാസം 7 അല്ലേ?

ഇതിൽ x ആയി ഏതു അധിസംഖ്യയും എടുക്കാമല്ലോ; അതായത്, കല α

വേറൊരു കണക്ക്. ചുവടെ കാണിച്ചിരിക്കുന്നതുപോലെ ഒരു ഗുണനപ്പ ട്ടിക ഉണ്ടാക്കുക:

1	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

കലണ്ടറിൽ ചെയ്തതുപോലെ സമചതുരത്തിനുള്ളിൽ വരുന്ന നാലു സംഖൃകൾ അടയാളപ്പെടുത്തുക.

കോണോടുകോൺ ഗുണിക്കുന്നതിനു പകരം കൂട്ടി നോക്കു.

$$12 + 20 = 32$$

$$16 + 15 = 31$$

മറ്റേതെങ്കിലും നാല് സംഖ്യകൾ ഇങ്ങനെ എടുത്താലോ?

$$35 + 48 = 83$$

$$40 + 42 = 82$$

എപ്പോഴും വ്യത്യാസം 1 തന്നെ ആകുന്നത് എന്തുകൊണ്ടാണ്? പട്ടികയിൽ ഒരു വരിയിലെ സംഖ്യകളെല്ലാം ഒരേ സംഖ്യയുടെ ഗുണി തങ്ങളാണല്ലോ. പൊതുവെ ഒരു വരിയിലെ സംഖ്യകൾ ഇങ്ങനെയാണ്;

$$x$$
 $2x$ $3x$ $4x$ $5x$ $6x$ $7x$ $8x$ $9x$

അടുത്ത വരിയിലെ സംഖൃകളും കൂടി നോക്കാം.

$$x$$
 $2x$ $3x$ $4x$ $5x$ $6x$ $7x$ $8x$ $9x$

$$x+1$$
 2($x+1$) 3($x+1$) 4($x+1$) 5($x+1$) 6($x+1$) 7($x+1$) 8($x+1$) 9($x+1$)

ആദ്യമെഴുതിയ വരിയിലെ ഒരു സംഖ്യ yx എന്നെടുക്കാം. ഈ വരി യിലെ അടുത്ത സംഖ്യ x ന്റെ അടുത്ത ഗുണിതമാണല്ലോ; അതായത്, $(y+1)\,x$.

അടുത്ത വരിയിൽ, yx നു ചുവട്ടിൽ വരുന്ന സംഖ്യ എന്താണ്?

അത് x+1 ന്റെ ഗുണിതമാണ്; ഏതു ഗുണിതം?

ഈ വരിയിൽ അതിനടുത്ത സംഖ്യയോ?

അപ്പോൾ നാലു സംഖ്യകളുടെ സമചതുരത്തിന്റെ പൊതുവായ രൂപം ഇങ്ങനെയാണ്.

$$yx$$
 $(y+1)x$

$$y(x+1)$$
 $(y+1)(x+1)$

ഇവയിൽ

$$(y+1) x = yx + x$$
$$y (x+1) = yx + y$$

ഇവയുടെ തുക

$$(y+1) x + y (x+1) = 2yx + y + x$$

മറ്റു രണ്ടു ഗുണിതങ്ങളിൽ yx നെ ഒന്നും ചെയ്യാനില്ല; (y+1) (x+1) എന്നതിനെ വിസ്തരിച്ചെഴുതിയാലോ?

$$(y+1)(x+1) = yx + y + x + 1$$

രണ്ടാമത്തെ ജോടി ഗുണിതങ്ങളുടെ തുക

$$yx + (y + 1)(x + 1) = 2yx + y + x + 1$$

അപ്പോൾ കോണോടുകോണുള്ള ഒരു തുക 2yx+x+y;മറ്റേ തുക 2yx+y+x+1; ഇവയുടെ വൃത്യാസം 1

ഈ കണക്ക് ചെയ്യുന്നതിനിടയിൽ,

$$(y+1)(x+1) = yx + y + x + 1$$
 എന്നു കണ്ടല്ലോ.

ഇത് ഒരു പൊതുതത്വമായി സാധാരണ ഭാഷയിൽ എങ്ങനെ പറയാം? ഇതുപയോഗിച്ച് ചില ഗുണനങ്ങൾ മനക്കണ ക്കായി ചെയ്യാൻ കഴിയുമോ?

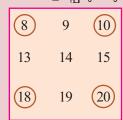
ഈ തത്വത്തിൽ, 1 നു പകരം 2 എടുത്താലോ?

(1) ചുവടെ കാണിച്ചിരിക്കുന്നത് പോലെ സംഖൃകൾ എഴുതുക.

1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	
16	17	18	19	20	
21	22	23	24	25	
l .					

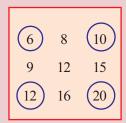
- i) കലണ്ടറിൽ ചെയ്തതുപോലെ നാലു സംഖൃകളുള്ള ഒരു സമ ചതുരം അടയാളപ്പെടുത്തി, കോണോടുകോൺ ഗുണിച്ച് വൃത്യാസം കണ്ടുപിടിക്കുക. ഏതു സമചതുരത്തിലെയും നാലു സംഖൃകളെടുത്താൽ ഒരേ വൃത്യാസമാണോ കിട്ടുന്നത്?
- ii) ഇത് എന്തുകൊണ്ടാണെന്ന് ബീജഗണിതം ഉപയോഗിച്ചു വിശ ദീകരിക്കുക.

iii) നാലു സംഖൃകളുള്ള സമചതുരത്തിനു പകരം, ഒൻപതു സംഖൃ കളുള്ള ഒരു സമചതുരമെടുത്ത്, നാലു മൂലകളിലുമുള്ള സംഖൃ കൾ മാത്രം അടയാളപ്പെടുത്തുക.



കോണോടുകോൺ ഗുണനഫലങ്ങളുടെ വ്യത്യാസം എന്താണ്? ബീജ ഗണിതം ഉപയോഗിച്ച് വിശദീകരിക്കുക.

(2) നേരത്തെ കണ്ട ഗുണനപ്പട്ടികയിൽ, നാല് സംഖ്യകളുള്ള സമച തുരത്തിനു പകരം, ഒൻപത് സംഖ്യകളുള്ള ഒരു സമചതുരമെടുത്ത്, നാലു മൂലകളിലുമുള്ള സംഖ്യകൾ മാത്രം അടയാളപ്പെടുത്തുക:



- i) കോണോടു കോൺ തുകകളുടെ വ്യത്യാസം എന്താണ്?
- ii) ഇങ്ങനെയുള്ള സമചതുരങ്ങളിലെല്ലാം വ്യത്യാസം ഒരേ സംഖ്യ തന്നെ കിട്ടുന്നത് എന്തുകൊണ്ടാണെന്ന് ബീജഗണിതം ഉപയോ ഗിച്ച് വിശദീകരിക്കുക.
- iii) പതിനാറ് സംഖൃകളുടെ സമചതുരമെടുത്താലോ?
- (3) ചുവടെയുള്ള ക്രിയകൾ നോക്കുക:

$$1 \times 4 = (2 \times 3) - 2$$

$$2 \times 5 = (3 \times 4) - 2$$

$$3 \times 6 = (4 \times 5) - 2$$

$$4 \times 7 = (5 \times 6) - 2$$

- i) ഈ ക്രമത്തിൽ അടുത്ത രണ്ടു വരികളിലെ ക്രിയകൾ എഴുതുക.
- ii) അടുത്തടുത്ത നാല് എണ്ണൽസംഖ്യകളിൽ ആദ്യത്തെയും അവ സാനത്തെയും സംഖ്യകളുടെ ഗുണനഫലവും, നടുവിലെ രണ്ടു സംഖ്യകളുടെ ഗുണനഫലവും തമ്മിലുള്ള ബന്ധമെന്താണ്?
- iii) ഈ പൊതുതത്വം ബീജഗണിതത്തിലെഴുതി, കാരണം വിശദീ കരിക്കുക.

(4) 46×28 എന്ന ഗുണനഫലം കണ്ടുപിടിക്കാനുള്ള ഒരു രീതി ചുവടെ കാണിച്ചിരിക്കുന്നു.

$$4 \times 2 = 8$$
 8×100 800 $(4 \times 8) + (6 \times 2) = 44$ 44×10 440 6×8 48 1288

- i) മറ്റു ചില രണ്ടക്കസംഖൃകളിൽ ഈ രീതി പരിശോധിക്കുക.
- ii) ഇത് ശരിയാകാനുള്ള കാരണം, ബീജഗണിത രീതിയിൽ വിശദീ കരിക്കുക. (രണ്ടക്ക സംഖൃകളെയെല്ലാം 10m + n എന്ന ബീജഗ ണിതരൂപത്തിൽ എഴുതാമെന്ന് ഏഴാം ക്ലാസിൽ സംഖൃകളും ബീജഗണിതവും എന്ന പാഠത്തിലെ രണ്ടക്കസംഖൃകൾ എന്ന ഭാഗത്ത് കണ്ടത് ഓർക്കുക)

തുകയുടെ വർഗം

 51^2 എത്രയാണ്?

ഗുണിച്ചു നോക്കാതെ കണക്കാക്കാൻ ഒരു മാർഗം ഏഴാം ക്ലാസിൽ കണ്ടി ട്യുണ്ടല്ലോ. (വർഗവും വർഗമൂലവും എന്ന പാഠത്തിലെ അടുത്ത വർഗം എന്ന ഭാഗം)

അതനുസരിച്ച് 50^2 നോട് 50 ഉം, പിന്നെ 51 ഉം കൂട്ടിയാൽ മതി. അതാ യത്,

$$51^2 = 50^2 + 50 + 51 = 2601$$

ഇതു ശരിയാകുന്നത് എന്തുകൊണ്ടാണ്?

അതറിയാൻ, 51² നെ പിരിച്ചെഴുതാം.

$$51^2 = 51 \times 51 = (50 + 1)(50 + 1)$$

ഇതിനെ നാലു ഗുണനഫലങ്ങളുടെ തുകയായി എഴുതാമല്ലോ.

$$(50+1)(50+1) = (50 \times 50) + (50 \times 1) + (1 \times 50) + (1 \times 1)$$
$$= 2500 + 50 + 50 + 1$$
$$= 2500 + 50 + 51$$

ഇതുപോലെ ഏത് വർഗത്തെയും പിരിച്ചെഴുതാം.

ഇക്കാര്യം ബീജഗണിതത്തിൽ എഴുതുന്നതെങ്ങനെ?

 x^2 ൽ നിന്ന് $(x+1)^2$ കിട്ടാൻ, x^2 നോട് x ഉം, അടുത്ത സംഖ്യയായ x+1 ഉം കൂട്ടണം. ഇത് എന്തുകൊണ്ട് ശരിയാകുന്നു എന്നറിയാൻ നേരത്തെ കണ്ട ഗുണനത്താം ഉപയോഗിക്കാം.

70

$$(x+1)^2 = (x+1)(x+1)$$

= $(x \times x) + (x \times 1) + (1 \times x) + (1 \times 1)$
= $x^2 + x + (x+1)$

x + (x + 1) = 2x + 1 ആണല്ലോ; അപ്പോൾ

$$(x+1)^2 = x^2 + 2x + 1$$

ഇതുപയോഗിച്ച്

$$61^2 = (60 + 1)^2 = 60^2 + (2 \times 60) + 1 = 3600 + 120 + 1 = 3721$$

എന്നു കണക്കാക്കുകയും ചെയ്യാം.

ഇനി 75^2 കണ്ടുപിടിക്കണമെന്ന് കരുതുക. ഇതിനെ $(74+1)^2$ എന്നെ ഴുതി ചെയ്യാൻ തുടങ്ങിയാൽ 74² കണ്ടുപിടിക്കേണ്ടിവരും.

 $(70 + 5)^2$ എന്നെഴുതിയാലോ?

ഇങ്ങനെ പിരിച്ചെഴുതാം.

$$75^{2} = (70 + 5) (70 + 5)$$

$$= 70^{2} + (70 \times 5) + (5 \times 70) + 5^{2}$$

$$= 4900 + 350 + 350 + 25$$

$$= 5625$$

103² ആയാലോ?

$$103^{2} = (100 + 3) (100 + 3)$$
$$= 10000 + 300 + 300 + 9$$
$$= 10609$$

ഇതിലെല്ലാം കണ്ട കാര്യം പൊതുവായി എഴുതാം.

രണ്ട് അധിസംഖൃകളുടെ തുകയുടെ വർഗം, സംഖൃകളുടെ വർഗ ങ്ങളുടെയും ഗുണനഫലത്തിന്റെ രണ്ടു മടങ്ങിന്റെയും തുക യാണ്.

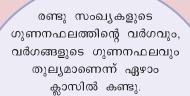
ഉദാഹരണമായി

$$\left(10\frac{1}{2}\right)^2 = \left(10 + \frac{1}{2}\right)^2 = 10^2 + \left(2 \times 10 \times \frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 = 100 + 10 + \frac{1}{4} = 110\frac{1}{4}$$

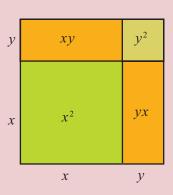
ഇത് ബീജഗണിതഭാഷയിൽ ഇങ്ങനെ എഴുതാം:

$$x,y$$
 എന്ന ഏതു രണ്ട് അധിസംഖ്യകളെടുത്താലും
$$(x+y)^2 \; = \; x^2 \; + y^2 \; + 2xy$$

- (1) ചുവടെയുള്ള സംഖൃകളുടെ വർഗങ്ങൾ മനക്കണക്കായി കണ്ടുപി ടിക്കുക.
 - (i) 52
- (ii) 105 (iii) $20\frac{1}{2}$ (iv) 10.2



രണ്ടു സംഖൃകളുടെ തുകയുടെ വർഗവും, വർഗങ്ങളുടെ തുകയും തുല്യമാണോ?



പൂർണവർഗങ്ങളുടെ ചില ക്രമങ്ങൾ എങ്ങനെ കിട്ടുന്നുവെന്ന് ഈ തത്വമുപയോഗിച്ചു മനസിലാക്കാം. ഉദാഹരണമായി, ഈ ക്രിയകൾ നോക്കൂ:

$$1 \times 3 = 3 = 2^2 - 1$$

 $2 \times 4 = 8 = 3^2 - 1$

$$3 \times 5 = 15 = 4^2 - 1$$

ഈ ക്രമത്തിലെ അടുത്ത കുറേ ക്രിയകൾ എഴുതിനോക്കു. ഇതുപോലെ തുടരുന്നുണ്ടോ?

ഒന്നിടവിട്ട ഏതു രണ്ട് എണ്ണൽസംഖ്യകളുടെയും ഗുണനഫലം, വിട്ട സംഖ്യയുടെ വർഗത്തിന് ഒന്നു കുറവായിരിക്കുമോ?

ബീജഗണിതം ഉപയോഗിച്ചു നോക്കാം. ഒന്നിടവിട്ട സംഖ്യകളെ x, x+2 എന്നെടുക്കാം. അവയുടെ ഗുണനഫലം.

$$x(x + 2) = x^2 + 2x$$

ഇവിടെ വിട്ട സംഖ്യ x+1. അതിന്റെ വർഗത്തിൽ നിന്ന് 1 കുറച്ചാലോ?

$$(x + 1)^2 - 1 = (x^2 + 2x + 1) - 1 = x^2 + 2x$$

അപ്പോൾ

$$x(x + 2) = (x + 1)^2 - 1$$

ഇതിൽ x ആയി $1, 2, 3, \dots$ എന്നിങ്ങനെ എടുത്താൽ, മുകളിലെഴുതിയ ക്രമം കിട്ടുമല്ലോ.

മറ്റൊരു കണക്കു നോക്കാം:

$$3 = 2^2 - 1^2$$

$$5 = 3^2 - 2^2$$

$$7 = 4^2 - 3^2$$

ഒന്നിനെക്കാൾ വലിയ ഒറ്റസംഖ്യകളെയെല്ലാം ഇങ്ങനെ അടുത്തടുത്ത എണ്ണൽസംഖ്യകളുടെ വർഗവ്യത്യാസമായി എഴുതാൻ കഴിയുമോ?

ഒന്നിനെക്കാൾ വലിയ ഏത് ഒറ്റസംഖ്യയേയും 2x+1 എന്ന രൂപത്തിൽ എഴുതാമെന്ന് ഏഴാം ക്ലാസിൽ കണ്ടല്ലോ. (സം**ഖ്യകളും ബീജഗണിതവും** എന്ന പാഠത്തിലെ **പൊതുരൂപങ്ങൾ** എന്ന ഭാഗം).

ഇതിനെ അടുത്തടുത്ത രണ്ടു വർഗങ്ങളുടെ വ്യത്യാസമായി എങ്ങനെ എഴുതാം? x^2 എന്ന സംഖൃയിൽ നിന്ന് $(x+1)^2$ എന്ന സംഖൃയിലെത്താൻ, 2x+1 എന്ന സംഖൃയാണല്ലോ കൂട്ടേണ്ടത്.

അപ്പോൾ 2x+1 കിട്ടാൻ $(x+1)^2$ ൽ നിന്ന് x^2 കുറച്ചാൽ മതി. അതായത്

$$2x + 1 = (x + 1)^2 - x^2$$

ഇതിൽ x ആയി $1, 2, 3, \ldots$ എന്നിങ്ങനെ എടുക്കുമ്പോൾ, 2x+1 ആയി ഒന്നിനെക്കാൾ വലിയ എല്ലാ ഒറ്റസംഖ്യകളും കിട്ടും; x, x+1 ആയി അടുത്തടുത്ത എല്ലാ എണ്ണൽ സംഖ്യകളും കിട്ടും.

ഇങ്ങനെ, ഒന്നിനെക്കാൾ വലിയ ഏത് ഒറ്റസംഖ്യയെയും, അടുത്തടുത്ത പൂർണവർഗങ്ങളുടെ വ്യത്യാസമായി എഴുതാം എന്നു കാണാം.

വർഗങ്ങളുടെ പൊതുവായ ചില സ്വഭാവങ്ങൾ വിശദീക രിക്കാനും തുകയുടെ വർഗതത്വം ഉപയോഗിക്കാം.

ഉദാഹരണമായി, ഒറ്റസംഖൃകളുടെയെല്ലാം വർഗങ്ങളും ഒറ്റ സംഖൃകൾ തന്നെ.

ഇതെന്തുകൊണ്ടാണ്?

ഒറ്റസംഖൃകളുടെയെല്ലാം വർഗം $(2x+1)^2$ എന്ന രൂപത്തി ലാണല്ലോ.

$$(2x + 1)^2 = (2x)^2 + (2 \times 2x \times 1) + 1^2 = 4x^2 + 4x + 1$$
 ഇതിൽ

$$4x^2 + 4x = 4(x^2 + x) = 4x(x + 1)$$

എന്നെഴുതാം. അപ്പോൾ

$$(2x+1)^2 = 4x(x+1)+1$$

ഇതിൽ 4x(x+1) എന്ന സംഖ്യ 4 ന്റെ ഗുണിതമാണ്; അതിനാൽ ഇരട്ടസംഖ്യയാണ്; അതിനോട് 1 കൂട്ടിയത് ഒറ്റസംഖ്യയാണ്.

ഇവിടെ മറ്റൊരു കാര്യം കൂടി കിട്ടി.

4x(x+1)+1 നെ 4 കൊണ്ടു ഹരിച്ചാൽ ശിഷ്ടം 1 ആണല്ലോ. ഇതിൽ നിന്ന് ഏത് ഒറ്റസംഖ്യയുടെ വർഗത്തിനെയും 4 കൊണ്ടു ഹരിച്ചാൽ ശിഷ്ടം 1 ആണെന്നു കാണാം.

അല്പം കൂടി ആലോചിക്കാം.

x,x+1 ഇവ അടുത്തടുത്ത എണ്ണൽസംഖ്യകളായതിനാൽ അവയിലൊന്ന് ഇരട്ട സംഖ്യയാണ്. അതേതായാലും, x-(x+1) ഇരട്ടസംഖ്യയാണ്; അതിനാൽ 4x-(x+1) എന്ന സംഖ്യ 8 ന്റെ ഗുണിതമാണ്.

അപ്പോൾ ഏത് ഒറ്റസംഖ്യയുടെ വർഗത്തിനെയും 8 കൊണ്ട് ഹരിച്ചാൽ ശിഷ്ടം 1 കിട്ടും എന്നും കാണാം.

76 ന്റെ കളി

 $76^2 = 5776$

 $176^2 = 30976$

 $276^2 = 76176$

76 ൽ അവസാനിക്കുന്ന വേറെയും സംഖ്യ കളുടെ വർഗം കണ്ടെത്തി നോക്കൂ.

എന്തു പ്രത്യേകതയാണ് കാണുന്നത്? എന്തുകൊണ്ടാണിത്?

76 ൽ അവസാനിക്കുന്ന ഏത് സംഖ്യ യേയും 100x + 76 എന്ന രൂപത്തിലെഴുതാം. $(100x + 76)^2 = 10000x^2 + 15200x + 5776.$

x ഏത് സംഖ്യയായാലും $10000x^2$ ന്റെയും 15200x ന്റെയും തുകയിൽ ഒന്നിന്റെയും പത്തിന്റെയും സ്ഥാനത്ത് പൂജ്യമായിരിക്കു മല്ലോ. ഇവയുടെ തുകയോട് 5776 കൂട്ടു മ്പോൾ അവസാനത്തെ രണ്ടക്കം 76 ആയി രിക്കും.

76 ന് പകരം മറ്റേതെങ്കിലും രണ്ടക്കസംഖ്യ കൾക്ക് ഈ പ്രത്യേകതയുണ്ടോ?

ഗണിതം

- (1) $1\frac{1}{2}$, $2\frac{1}{2}$, $3\frac{1}{2}$, ... എന്നിങ്ങനെയുള്ള സംഖ്യകളുടെ വർഗങ്ങൾ കണ്ടു പിടിക്കാൻ പൊതുവായ ഏതെങ്കിലും രീതിയുണ്ടോ? അത് ബീജഗണ്ടിതം ഉപയോഗിച്ച് വിശദീകരിക്കുക.
- (2) 37² കണ്ടുപിടിക്കാനുള്ള ഒരു രീതിയാണ് ചുവടെ കാണിച്ചിരിക്കു ന്നത്:

$$3^2 = 9$$
 9×100 900 $2 \times (3 \times 7) = 42$ 42×10 420 7^2 49 37^2 1369

- i) മറ്റു ചില രണ്ടക്കസംഖൃകളിൽ ഈ രീതി പരീക്ഷിക്കുക
- ii) ഇത് ശരിയാകാനുള്ള കാരണം, ബീജഗണിതരീതിയിൽ വിശ ദീകരിക്കുക.
- iii) 5 ൽ അവസാനിക്കുന്ന സംഖൃകളുടെ വർഗം കണക്കാക്കാ നുള്ള എളുപ്പവഴി കണ്ടുപിടിക്കുക.
- (3) ഈ ക്രിയകൾ നോക്കൂ:

$$1^2 + (4 \times 2) = 3^2$$

 $2^2 + (4 \times 3) = 4^2$

$$3^2 + (4 \times 4) = 5^2$$

- i) തുടർന്നുള്ള രണ്ട് ക്രിയകൾ കൂടി എഴുതുക
- ii) ഇതിൽ നിന്നു കിട്ടുന്ന പൊതുതത്വം എന്താണ്? ബീജഗണി തമുപയോഗിച്ച് വിശദീകരിക്കുക.
- (4) 3 ന്റെ ഗുണിതമല്ലാത്ത ഏത് എണ്ണൽസംഖ്യയുടെയും വർഗത്തെ 3 കൊണ്ട് ഹരിച്ചാൽ ശിഷ്ടം 1 ആണെന്ന് ബീജഗണിതം ഉപ
 - യോഗിച്ച് വിശദീകരിക്കുക.
- (5) 3 ൽ അവസാനിക്കുന്ന സംഖ്യകളുടെയെല്ലാം വർഗങ്ങൾ അവ സാനിക്കുന്നത് 9 ൽ ആയിരിക്കും എന്ന് സമർഥിക്കുക.
 - 5 ൽ അവസാനിക്കുന്ന സംഖ്യകളായാലോ?
 - 4 ൽ അവസാനിക്കുന്ന സംഖ്യകളോ?

വ്യത്യാസഗുണനം

ചില ഗുണനക്രിയകൾ തുകകളായി പിരിച്ചെഴുതി കണക്കാക്കാനുള്ള മാർഗം കണ്ടല്ലോ. ഉദാഹരണമായി

$$302 \times 205 = (300 + 2) \times (200 + 5) = 60000 + 1500 + 400 + 10 = 61910$$

ഇനി 298×195 കണക്കാക്കണമെങ്കിലോ?

$$298 \times 195 = (300 - 2) \times (200 - 5)$$

എന്നു പിരിച്ചെഴുതാം. ഇത് ആദ്യത്തെ കണക്കിലെപ്പോലെ നാല് ഗുണ നഫലങ്ങളായി പിരിച്ചെഴുതുന്നതെങ്ങനെ?

ആദ്യം

$$298 \times 195 = (300 - 2) \times 195$$

എന്നു മാത്രം എഴുതാം. ഇതു പിരിച്ചെഴുതാമല്ലോ:

$$(300 - 2) \times 195 = (300 \times 195) - (2 \times 195)$$

ഇനി 195 = 200 - 5 എന്നെഴുതി ഈ രണ്ട് ഗുണനങ്ങളെയും പിരിച്ചെ ഴുതാം:

$$300 \times 195 = 300 \times (200 - 5) = 60000 - 1500 = 58500$$

$$2 \times 195 = 2 \times (200 - 5) = 400 - 10 = 390$$

ഇതെല്ലാം ചേർത്തു വായിച്ചാൽ

$$298 \times 195 = (300 - 2) \times 195$$
$$= (300 \times 195) - (2 \times 195)$$
$$= 58500 - 390$$

58500 ൽ നിന്ന് 390 കുറയ്ക്കാനുള്ള എളുപ്പവഴി, 400 കുറച്ച് 10 കൂട്ടലാണ്.

അതായത്,

$$58500 - 390 = 58500 - 400 + 10 = 58110$$

(ഏഴാംക്ലാസിലെ മാറുന്ന സംഖൃകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിലെ കുറയ്ക്കുന്നത് കുറഞ്ഞാൽ എന്ന ഭാഗം)

നീളം കുറച്ചാൽ

12 സെന്റിമീറ്റർ നീളവും 7 സെന്റിമീ റ്റർ വീതിയുമുള്ള ചതുരത്തിന്റെ നീളം 3 സെന്റിമീറ്റർ കുറച്ച് ചെറിയ ചതുര മാക്കിയാലോ?

പരപ്പളവ് എത്ര കുറഞ്ഞു? ഇവിടെ ചെയ്ത ക്രിയ എന്താണ്.

$$(12-3)\times 7 = (12\times 7) - (3\times 7)$$

ഇതുപോലെ 397 നെ 199 കൊണ്ട് ഗുണിക്കുന്നത് ചെയ്തു നോക്കാം.

$$397 \times 199 = (400 - 3) \times 199$$

$$= (400 \times 199) - (3 \times 199)$$

$$400 \times 199 = 400 \times (200 - 1)$$

$$= (400 \times 200) - (400 \times 1)$$

$$= 80000 - 400$$

$$= 79600$$

$$3 \times 199 = 3 \times (200 - 1)$$

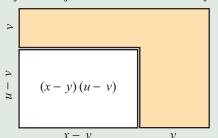
$$= 600 - 3$$

$$= 597$$

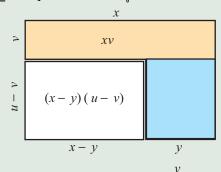
എല്ലാം ചേർത്തു വായിച്ചാലോ?

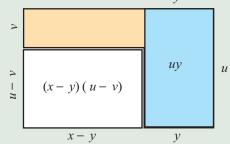
വ്യത്യാസഗുണനം ജ്യാമിതിയിലൂടെ

ഒരു ചതുരത്തിന്റെ രണ്ടു വശങ്ങളും കുറച്ച് ചതുരം ചെറുതാക്കിയ ചിത്രം നോക്കൂ.

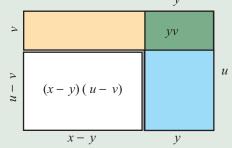


ഈ ചിത്രങ്ങൾ നോക്കു.





മുകളിലും വലതുവശത്തുമുള്ള രണ്ടു ചതു രങ്ങളും കുറച്ചാൽ, മുകളിലെ മൂലയിലുള്ള ചതുരം രണ്ടു തവണ കുറഞ്ഞുപോകും.



അത് ശരിയാക്കാൻ, ഈ ചതുരം ഒരു തവണ കൂട്ടണം. അതായത്,

$$(x - y) (u - v) = xu - xv - yu + yv$$

$$397 \times 199 = 79600 - 597$$

597 കുറയ്ക്കുന്നതിനേക്കാൾ എളുപ്പം 600 കുറച്ച് 3 കൂട്ടുന്ന താണ്.

അപ്പോൾ
$$397 \times 199 = 79600 - 600 + 3 = 79003$$

ഇവിടെ ചെയ്ത ക്രിയകളെല്ലാം ഒന്നിച്ച് എഴുതി നോക്കാം.

$$397 \times 199 = 80000 - 400 - 600 + 3$$

അല്പം കൂടി വിസ്തരിച്ച് എഴുതിയാൽ,

$$397 \times 199 = (400 \times 200) - (400 \times 1) - (3 \times 200) + (3 \times 1)$$

ഇതുപോലെ

$$398 \times 197 = (400 - 2) \times (200 - 3)$$

$$= (400 \times 200) - (400 \times 3) - (2 \times 200) + (2 \times 3)$$

$$= 80000 - 1200 - 400 + 6$$

$$= 78400 + 6$$

$$= 78406$$

ഇതൊരു പൊതുതത്വമായി സാധാരണ ഭാഷയിൽ പറയാൻ വിഷമമാണ്. ബീജഗണിതത്തിലായാലോ?

$$x>y,\; u>v$$
 ആയ ഏത് അധിസംഖൃകളെടുത്താലും
$$(x-y)\; (u-v)=\; xu-xv-yu+yv$$

ഇതുപയോഗിച്ച്, രണ്ട് സംഖൃകളുടെ വ്യത്യാസത്തിന്റെ വർഗം കണക്കാക്കാനുള്ള പൊതുവായ രീതിയും കണ്ടു പിടിക്കാം:

$$(x - y)^{2} = (x - y) \times (x - y)$$

$$= (x \times x) - (x \times y) - (y \times x) + (y \times y)$$

$$= x^{2} - xy - yx + y^{2}$$

$$= x^{2} - xy - xy + y^{2}$$

ഇതിൽ ആദ്യം x^2 എന്ന സംഖ്യയിൽ നിന്ന് xy എന്ന സംഖ്യ കുറയ്ക്കണം; തുടർന്ന് ഒരിക്കൽക്കൂടി അതുതന്നെ കുറയ്ക്കണം. ഇങ്ങനെ ഒന്നിനു ശേഷം മറ്റൊന്നായി കുറയ്ക്കുന്ന തിനു പകരം, xy + xy = 2xy എന്ന തുക കുറച്ചാൽ മതിയ ല്ലോ. (ഏഴാം ക്ലാസിലെ മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിൽ, കൂട്ടലും കുറയ്ക്കലും എന്ന ഭാഗം).

അതായത്,

$$x^2 - xy - xy = x^2 - (xy + xy) = x^2 - 2xy$$

ഇനി നേരത്തെ നിർത്തിയ സ്ഥലത്തു നിന്ന് തുടരാം:

$$(x - y)^2 = x^2 - xy - xy + y^2 = x^2 - 2xy + y^2$$

ഇതു ഒരു പൊതുതത്വമായി എഴുതിവയ്ക്കാം:

x > y ആയ ഏത് അധിസംഖൃകളെടുത്താലും

$$(x - y)^2 = x^2 + y^2 - 2xy$$

ഇക്കാര്യം സാധാരണഭാഷയിലും പറയാം:

രണ്ട് അധിസംഖൃകളുടെ വൃതൃാസത്തിന്റെ വർഗം, അവയുടെ വർഗങ്ങളുടെ തുകയിൽ നിന്ന് ഗുണനഫലത്തിന്റെ രണ്ട് മടങ്ങ് കുറച്ചതാണ്.

ഉദാഹരണമായി

$$99^{2} = (100 - 1)^{2} = 100^{2} - (2 \times 100 \times 1) + 1^{2}$$
$$= 10000 - 200 + 1 = 9800 + 1 = 9801$$

ഇനി ഈ കണക്കുകൾ നോക്കൂ:

$$2(2^2+1^2) = 10 = 3^2 + 1^2$$

$$2(3^2+2^2) = 26 = 5^2 + 1^2$$

$$2(5^2+1^2) = 52 = 6^2+4^2$$

$$2(4^2+6^2) = 104 = 10^2+2^2$$

കുറെ എണ്ണൽസംഖ്യകളുടെ ജോടിയെടുത്ത് വർഗങ്ങളുടെ തുക കണ്ടു പിടിക്കുക; അതിന്റെ രണ്ട് മടങ്ങിനെ ഒരു ജോടി പൂർണവർഗങ്ങളുടെ തുകയായി എഴുതാൻ കഴിയുന്നുണ്ടോ?

തുടങ്ങുന്ന ജോടിയും അവസാനമെഴുതുന്ന ജോടിയും തമ്മിൽ എന്താണു ബന്ധം?

ആദ്യമെടുത്ത ജോടിയുടെ തുകയും വ്യത്യാസവും കണ്ടു പിടിച്ചു നോക്കൂ.

ഇതിന്റെ കാരണമെന്താണ്?

ബീജഗണിതം ഉപയോഗിക്കാം. തുടങ്ങുന്ന ജോടി x, y എന്നെടുക്കാം. അപ്പോൾ തുകയുടെ വർഗം

$$(x + y)^2 = x^2 + y^2 + 2xy$$

ജോടിയിലെ വലിയ സംഖ്യ x എന്നെടുത്താൽ, വ്യത്യാസ ത്തിന്റെ വർഗം

$$(x - y)^2 = x^2 + y^2 - 2xy$$

ഇവ തമ്മിൽ കൂട്ടിയാലോ? x^2 , y^2 രണ്ടു തവണ വരും; 2xy കൂട്ടുകയും, കുറയ്ക്കുകയും ചെയ്തതു കൊണ്ട് ഇല്ലാതാ കും. അതായത്

$$(x + y)^2 + (x - y)^2 = 2(x^2 + y^2)$$

ഇതു തിരിച്ച് $2(x^2+y^2)=(x+y)^2+(x-y)^2$ എന്നെഴുതി യാൽ, തുടങ്ങിയ കണക്കുകൾക്ക് കാരണമായി.

രണ്ട് സംഖ്യകളുടെ തുകയുടെയും വ്യത്യാസത്തിന്റെയും വർഗം കൂട്ടിയാൽ, സംഖ്യകളുടെ തന്നെ വർഗങ്ങൾ കൂട്ടു ന്നതിന്റെ രണ്ട് മടങ്ങ് കിട്ടുമെന്ന് കണ്ടു.

തുകയുടെ വർഗത്തിൽ നിന്ന്, വൃത്യാസത്തിന്റെ വർഗം കുറച്ചാലോ?

$$(x + y)^2 - (x - y)^2 = (x^2 + y^2 + 2xy) - (x^2 + y^2 - 2xy)$$

അതായത്, $x^2 + y^2$, 2xy എന്നീ സംഖൃകളുടെ തുകയിൽ നിന്ന്, അവയുടെ വൃത്യാസം കുറയ്ക്കണം. അത് 2xy എന്ന സംഖൃയുടെ രണ്ടു മടങ്ങാണല്ലോ. (ഏഴാം ക്ലാസിലെ മാറുന്ന സംഖൃകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിൽ, തുകയും വൃത്യാസവും എന്ന ഭാഗം). അതായത്,

$$(x + y)^2 - (x - y)^2 = 2 \times 2xy = 4xy$$

ഇത് തിരിച്ചെഴുതിയാൽ,

$$4xy = (x + y)^2 - (x - y)^2$$

ഉദാഹരണമായി

$$8 = 4 \times 2 \times 1 = 3^2 - 1^2$$

$$12 = 4 \times 3 \times 1 = 4^2 - 2^2$$

$$16 = 4 \times 4 \times 1 = 5^2 - 3^2$$

$$20 = 4 \times 5 \times 1 = 6^2 - 4^2$$

ഇങ്ങനെ 8 മുതലുള്ള 4 ന്റെ ഗുണിതങ്ങളെയെല്ലാം രണ്ടു പൂർണവർഗങ്ങളുടെ വൃത്യാസമായി എഴുതാം.

ചൈാഗറസ് ത്രയങ്ങൾ

മൂന്ന് എണ്ണൽ സംഖ്യകളിൽ രണ്ടെണ്ണ ത്തിന്റെ വർഗങ്ങളുടെ തുക മൂന്നാ മത്തേതിന്റെ വർഗത്തിന് തുല്യമായാൽ, ഈ മൂന്ന് സംഖ്യകളെ ഒരു പൈഥാഗറസ് ത്രയം എന്നാണ് പറയുക എന്ന് ഏഴാം ക്ലാസിൽ കണ്ടല്ലോ

ഉദാഹരണമായി

$$3^2 + 4^2 = 5^2$$

ആയതിനാൽ 3, 4, 5 എന്ന മൂന്നു സംഖ്യ കൾ ഒരു പൈഥാഗറസ് ത്രയമാണ്. ഏതാണ്ട് ബി.സി. രണ്ടായിരത്തിലെ ബാബിലോണിയയിൽ നിന്നുള്ള ഒരു കളിമൺപലകയിൽ ഇത്തരം ത്രയങ്ങളുടെ ഒരു പട്ടിക തന്നെ കൊടുത്തിട്ടുണ്ട്.

ഇത്തരം എല്ലാ ത്രയങ്ങളും കണ്ടുപിടി ക്കാൻ ഒരു മാർഗമുണ്ട്. m, n എന്ന ഏതെ കിലും രണ്ട് എണ്ണൽസംഖ്യകളെടുക്കുക. ചുവടെ പറഞ്ഞിട്ടുള്ളതു പോലെ x, y, zഎന്ന സംഖ്യകൾ കണക്കാക്കുക.

$$x = m^2 - n^2$$
$$y = 2mn$$
$$z = m^2 + n^2$$

ഇപ്പോൾ

$$x^2 + y^2 = z^2$$

ആണെന്ന് കാണാൻ വിഷമമില്ല.

$$x^{2} + y^{2} = (m^{2} - n^{2})^{2} + (2mn)^{2}$$

$$= m^{4} + n^{4} - 2m^{2}n^{2} + 4m^{2}n^{2}$$

$$= m^{4} + n^{4} + 2m^{2}n^{2}$$

$$= (m^{2} + n^{2})^{2}$$

$$= z^{2}$$

ഏതാണ്ട് ബി.സി. മൂന്നാം നൂറ്റാണ്ടിൽ ത്തന്നെ ഗ്രീസിലെ ഗണിതശാസ്ത്ര ജ്ഞർക്ക് ഈ രീതി അറിയാമായിരുന്നു. (1) ചുവടെയുള്ള സംഖ്യകളുടെ വർഗം കണ്ടു പിടിക്കുക.

- i) 49
- ii)
- iii) $7\frac{3}{4}$ iv) 9.25

(2) ഈ കണക്കുകൾ നോക്കുക:

$$\left(\frac{1}{2}\right)^2 + \left(1\frac{1}{2}\right)^2 = 2\frac{1}{2}$$
 $2 = 2 \times 1^2$

$$2 = 2 \times 1^2$$

$$\left(1\frac{1}{2}\right)^2 + \left(2\frac{1}{2}\right)^2 = 8\frac{1}{2}$$
 $8 = 2 \times 2^2$

$$8 = 2 \times 2^2$$

$$\left(2\frac{1}{2}\right)^2 + \left(3\frac{1}{2}\right)^2 = 18\frac{1}{2} \qquad 18 = 2 \times 3^2$$

$$18 = 2 \times 3^2$$

ഇവയിലെ പൊതുതത്വം ബീജഗണിതം ഉപയോഗിച്ച് വിശദീകരിക്കുക.

(3) ചില എണ്ണൽസംഖൃകളെ രണ്ടു പൂർണവർഗങ്ങളുടെ വൃത്യാസ മായി രണ്ടുതരത്തിൽ എഴുതാം. ഉദാഹരണമായി

$$24 = 7^2 - 5^2 = 5^2 - 1^2$$

$$32 = 9^2 - 7^2 = 6^2 - 2^2$$

$$40 = 11^2 - 9^2 = 7^2 - 3^2$$

- i) 24 മുതലുള്ള 8 ന്റെ ഗുണിതങ്ങളെയെല്ലാം ഇങ്ങനെ രണ്ടു തര ത്തിൽ എഴുതുന്ന രീതി, ബീജഗണിതത്തിലൂടെ വിശദീകരി ക്കുക.
- ii) 48 മുതലുള്ള 16 ന്റെ ഗുണിതങ്ങളെ എത്ര തരത്തിൽ പൂർണ വർഗങ്ങളുടെ വ്യത്യാസമായി എഴുതാം?

തുകയും വൃത്യാസവും

സംഖ്യകളെ തുകകളായും, വ്യത്യാസങ്ങളായും പിരിച്ചെഴുതി ഗുണന ഫലങ്ങൾ കണ്ടുവല്ലോ. ഉദാഹരണമായി,

$$203 \times 302 = (200 + 3) \times (300 + 2) = 60000 + 400 + 900 + 6 = 61306$$

$$197 \times 298 = (200 - 3) \times (300 - 2) = 60000 - 400 - 900 + 6 = 58706$$

എന്നെല്ലാം കണക്കുകൂട്ടാം.

203 imes 298 നെ എങ്ങനെ പിരിച്ചെഴുതുന്നതാണ് സൗകര്യം?

$$203 \times 298 = (200 + 3) \times (300 - 2)$$

ഇതു കണക്കാക്കാൻ മുമ്പു ചെയ്തതുപോലെ, ആദ്യം 203 നെ മാത്രം പിരിച്ചെഴുതാം.

$$203 \times 298 = (200 + 3) \times 298 = (200 \times 298) + (3 \times 298)$$

ഇനി 298 നെ പിരിച്ചെഴുതി, ഈ രണ്ടു ഗുണനങ്ങളും വെവ്വേറെ ചെയ്യാം.

$$200 \times 298 = 200 \times (300 - 2) = 60000 - 400 = 59600$$

$$3 \times 298 = 3 \times (300 - 2) = 900 - 6 = 894$$

എല്ലാ ക്രിയകളും ചേർത്തെഴുതിയാൽ

$$203 \times 298 = (200 + 3) \times 298$$

$$= (200 \times 298) + (3 \times 298)$$

$$= 59600 + 894$$

$$= 60494$$

പൊതുവായ രീതി മനസ്സിലാക്കാൻ ചെയ്ത ക്രിയകളെല്ലാം ഒന്നിച്ചെ ഴുതാം:

$$203 \times 298 = 60000 - 400 + 900 - 6$$

വിസ്തരിച്ചെഴുതിയാൽ

$$(200+3) \times (300-2) = (200 \times 300) - (200 \times 2) + (3 \times 300) - (3 \times 2)$$
 ഇതുപോലെ

$$105 \times 197 = (100 + 5) \times (200 - 3)$$

$$= (100 \times 200) - (100 \times 3) + (5 \times 200) - (5 \times 3)$$

$$= 20000 - 300 + 1000 - 15$$

$$= 20000 + 700 - 15$$

$$= 20685$$

ഈ കണക്കുകൂട്ടലിന്റെ ബീജഗണിതരൂപം ഇങ്ങനെയെഴുതാം:

x, y, u, v എന്ന അധിസംഖൃകളിൽ u > v ആണെങ്കിൽ

$$(x+y)(u-v) = xu - xv + yu - yv$$

ഇതുപയോഗിച്ച്, രണ്ടു സംഖൃകളുടെ തുകയും വൃത്യാസവും തമ്മിൽ ഗുണിക്കാനുള്ള പൊതുവായ രീതിയും കണ്ടുപിടിക്കാം:

$$(x + y) (x - y) = (x \times x) - (x \times y) + (y \times x) - (y \times y)$$

= $x^2 - xy + yx - y^2$
= $x^2 - y^2$

 $x\!>\!y$ ആയ ഏത് അധിസംഖൃകളെടുത്താലും

$$(x + y) (x - y) = x^2 - y^2$$

സാധാരണ ഭാഷയിൽ പറഞ്ഞാലോ?

രണ്ട് അധിസംഖ്യകളുടെ തുകയുടെയും വ്യത്യാസത്തിന്റെയും ഗുണനഫലം, അവയുടെ വർഗങ്ങളുടെ വ്യത്യാസത്തിനു തുല്യ മാണ്. ഉദാഹരണമായി

$$205 \times 195 = (200 + 5) \times (200 - 5) = 200^2 - 5^2 = 40000 - 25 = 39975$$

$$9\frac{1}{2} \times 8\frac{1}{2} = \left(9 + \frac{1}{2}\right) \times \left(9 - \frac{1}{2}\right) = 9^2 - \left(\frac{1}{2}\right)^2 = 81 - \left(\frac{1}{4}\right) = 80\frac{3}{4}$$

ഈ തത്വം തിരിച്ചും ഉപയോഗിക്കാം.

രണ്ട് അധിസംഖൃകളുടെ വർഗങ്ങളുടെ വ്യത്യാസം, അവയുടെ തുകയുടെയും വ്യത്യാസത്തിന്റെയും ഗുണനഫലത്തിനു തുല്യ മാണ്.

ഉദാഹരണമായി

$$168^2 - 162^2 = (168 + 162) \times (168 - 162) = 330 \times 6 = 1980$$

ചില എണ്ണൽസംഖ്യകളെ പൂർണവർഗങ്ങളുടെ വ്യത്യാസമായി എഴു താമെന്നു കണ്ടല്ലോ. അങ്ങനെ എഴുതാൻ ഈ തത്വം ഉപയോഗിക്കാം. ഉദാഹരണമായി, 45 നോക്കുക. $x^2-y^2=45$ ആകുന്ന രണ്ടു സംഖ്യകൾ $x,\ y$ കണ്ടുപിടിക്കണം. ഇത്

$$45 = (x+y)(x-y)$$

എന്നെഴുതാം. അപ്പോൾ (x+y),(x-y) ഇവ 45 ന്റെ ഘടകങ്ങളാകണം. 45 നെ അതിന്റെ രണ്ട് ഘടകങ്ങളുടെ ഗുണനമായി പലതരത്തിൽ എഴു താമല്ലോ.

$$45 = 45 \times 1$$

$$45 = 15 \times 3$$

$$45 = 9 \times 5$$

എന്നെല്ലാം എഴുതാം. ഇതിൽ 45, 1 എന്നീ ഘടകങ്ങൾ എടുത്ത്

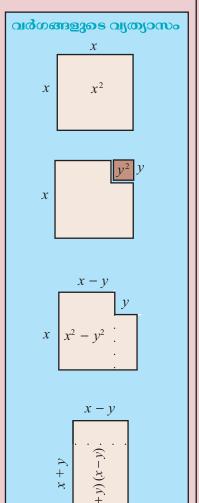
$$x + y = 45$$

$$x - y = 1$$

എന്നെഴുതി നോക്കാം. തുകയും വ്യത്യാസവും അറിഞ്ഞാൽ സംഖ്യ കൾ കണ്ടുപിടിക്കാനുള്ള മാർഗം ഏഴാം ക്ലാസിൽ കണ്ടിട്ടുണ്ടല്ലോ (മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠത്തിലെ തുകയും വ്യത്യാ സവും എന്ന ഭാഗം).

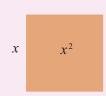
അപ്പോൾ $45,\,1$ എന്നീ സംഖൃകളുടെ തുകയാണ് x; വ്യത്യാസത്തിന്റെ പകുതിയാണ് y

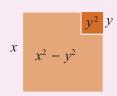
$$x = 23$$
 $y = 22$

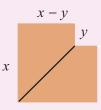


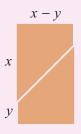
ഗണിതം

മറ്റൊരു രീതി









അപ്പോൾ

$$45 = 23^2 - 22^2$$

ഇതുപോലെ $45=15\times 3$ എന്ന് എടുത്തുനോക്കാം. x ഉം y യും ഇല്ലാതെ ആലോചിച്ചു കൂടെ?

15, 3 ഇവയുടെ തുകയുടെ പകുതി 9; വൃത്യാസത്തിന്റെ പകുതി 6.

അപ്പോൾ

$$45 = 9^2 - 6^2$$

ഇനി $45 = 9 \times 5$ എടുത്താലോ?

$$45 = 7^2 - 2^2$$

ഏത് എണ്ണൽസംഖ്യയെയും ഇങ്ങനെ രണ്ടു വർഗങ്ങളുടെ വൃത്യാസ മായി എഴുതാൻ കഴിയുമോ?

ഉദാഹരണമായി 10 എടുക്കാം. $10 = 10 \times 1$.

ഘടകങ്ങളുടെ തുകയുടെ പകുതിയെടുത്താൽ 5 $\frac{1}{2}$; വ്യത്യാസത്തിന്റെ

പകുതിയെടുത്താൽ $4\frac{1}{2}$; അപ്പോൾ

$$10 = \left(5\frac{1}{2}\right)^2 - \left(4\frac{1}{2}\right)^2$$

എന്നു വേണമെങ്കിൽ എഴുതാം; പക്ഷേ എണ്ണൽസംഖ്യകളുടെ വർഗങ്ങ ളല്ലല്ലോ; അതായത്, പൂർണവർഗങ്ങളല്ല.

 $10 = 5 \times 2$ എന്നെടുത്താലോ?

ഏതുതരം എണ്ണൽസംഖ്യകളെയാണ് രണ്ടു പൂർണവർഗങ്ങളുടെ വ്യത്യാസമായി എഴുതാൻ കഴിയാത്തത്?

രണ്ടു സംഖ്യകളുടെ ഗുണനഫലത്തെ വർഗങ്ങളുടെ വ്യത്യാസമായി എഴു തുന്നത് ചിലപ്പോൾ കണക്കുകൂട്ടൽ എളുപ്പമാക്കും.

ഉദാഹരണമായി 26.5×23.5 നോക്കുക. ഇതിനെ രണ്ടു വർഗങ്ങളുടെ വൃത്യാസമായി എഴുതാൻ കഴിയുമോ?

തുക 26.5 ഉം, വൃതൃാസം 23.5 ഉം ആകുന്ന രണ്ടു സംഖൃകൾ കണ്ടുപിടിച്ചാൽപ്പോരേ?

അതിന് 26.5, 23.5 എന്നിവയുടെ തുകയുടെ പകുതിയും വ്യത്യാസത്തിന്റെ പകുതിയും എടുത്താൽ മതി.

അതായത് 25 ഉം 1.5 ഉം. അപ്പോൾ

$$26.5 = 25 + 1.5$$
 $23.5 = 25 - 1.5$

ഇതുപയോഗിച്ച്

$$26.5 \times 23.5 = (25 + 1.5)(25 - 1.5) = 25^2 - 1.5^2 = 625 - 2.25 = 622.75$$

(1) ചുവടെയുള്ള ക്രിയകൾ മനക്കണക്കായി ചെയ്യുക.

i) a)
$$68^2 - 32^2$$
 b) $\left(3\frac{1}{2}\right)^2 - \left(2\frac{1}{2}\right)^2$ c) $3.6^2 - 1.4^2$

ii) a)
$$201 \times 199$$
 b) $2\frac{1}{3} \times 1\frac{2}{3}$ c) 10.7×9.3

(2) ഈ ക്രിയകൾ നോക്കൂ

$$\left(1\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 2$$

$$\left(2\frac{1}{2}\right)^2 - \left(1\frac{1}{2}\right)^2 = 4$$

$$\left(3\frac{1}{2}\right)^2 - \left(2\frac{1}{2}\right)^2 = 6$$

ഇവയിലെ പൊതുവായ രീതി ബീജഗണിതം ഉപയോഗിച്ച് വിശദീകരക്കുക.

(3) ചുവടെയുള്ള ഓരോ ജോടി ഗുണനത്തിലും ഏതിലാണ് വലിയ സംഖ്യ കിട്ടുന്നതെന്ന് ഗുണിച്ചു നോക്കാതെ കണ്ടുപിടിക്കുക.

i)
$$25 \times 75$$
, 26×74

ii)
$$76 \times 24$$
, 74×26

iv)
$$10.6 \times 9.4$$
, 10.4×9.6

(4) ചുവടെക്കൊടുത്തിരിക്കുന്ന വ്യത്യാസങ്ങൾ കണ്ടുപിടിക്കുക.

i)
$$(125 \times 75)$$
 - (126×74)

ii)
$$(124 \times 76)$$
 - (126×74)

iii)
$$(224 \times 176)$$
 - (226×174)

iv)
$$(10.3 \times 9.7) - (10.7 \times 9.3)$$

v)
$$(11.3 \times 10.7) - (11.7 \times 10.3)$$

ഒരേ തുകയുള്ള കുറെ ജോടി സംഖ്യകളെടുത്ത് ഗുണനഫലം കണക്കാക്കുക. വ്യത്യാസം മാറുന്നതനുസരിച്ച്, ഗുണനഫലം എങ്ങനെയാണ് മാറുന്നത്? ഏറ്റവും വലിയ ഗുണനഫലം കണ്ടു പിടിക്കാനുള്ള എളുപ്പവഴി എന്താണ്?

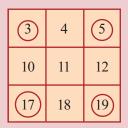
(1) കലണ്ടറിൽ ഒരു സമചതുരത്തിൽ വരുന്ന നാല് സംഖൃകൾ അടയാ ളപ്പെടുത്തുക.

4	5
11	12

കോണോടുകോൺ വരുന്ന സംഖ്യാജോടികളുടെ വർഗങ്ങൾ കൂട്ടുക; ഈ തുകകളുടെ വ്യത്യാസം കണക്കാക്കുക;

$$4^2 + 12^2 = 160$$
 $11^2 + 5^2 = 146$ $160 - 146 = 14$

- ഇതുപോലെ മറ്റു നാല് സംഖ്യകൾ അടയാളപ്പെടുത്തി ഈ കണ ക്കുകൾ ചെയ്യുക.
- ii) എല്ലാ സമചതുരത്തിലും വ്യത്യാസം 14 കിട്ടുന്നതിന്റെ കാര ണം, ബീജഗണിതമുപയോഗിച്ച് വിശദീകരിക്കുക.
- (2) കലണ്ടറിൽ ഒൻപത് സംഖൃകളുള്ള ഒരു സമചതുരമെടുത്ത്, നാല് മൂലകളിലുമുള്ള സംഖൃകൾ മാത്രം അടയാളപ്പെടുത്തുക:



കോണോടുകോൺ വരുന്ന സംഖ്യാജോടികളുടെ വർഗങ്ങൾ കൂട്ടുക; ഈ തുകകളുടെ വ്യത്യാസം കണക്കാക്കുക:

$$3^2 + 19^2 = 370$$
 $17^2 + 5^2 = 314$ $370 - 314 = 56$

i) ഒൻപത് സംഖൃകളുള്ള മറ്റു സമചതുരങ്ങളെടുത്ത് ഇതുപോലെ ചെയ്യുക.

- (ii) എല്ലാ സമചതുരത്തിലും വ്യത്യാസം 56 കിട്ടുന്നതിന്റെ കാരണം, ബീജഗണിതമുപയോഗിച്ച് വിശദീകരിക്കുക. (സമചതുരത്തിന്റെ നടുവിലെ സംഖ്യ x എന്നെടുക്കുന്നതാണ് സൗകര്യം – ഏഴാം ക്ലാസിലെ മാറുന്ന സംഖ്യകളും മാറാത്ത ബന്ധങ്ങളും എന്ന പാഠ ത്തിൽ, മറ്റൊരു കലണ്ടർ കണക്ക് എന്ന ഭാഗം നോക്കുക)
- (3) കലണ്ടറിൽ ഒൻപത് സംഖൃകളുള്ള ഒരു സമചതുരമെടുത്ത്, നാല് മൂലകളിലുമുള്ള സംഖ്യകൾ മാത്രം അടയാളപ്പെടുത്തുക.

3	4	(5)
10	11	12
17	18	19

കോണോടുകോൺ വരുന്ന സംഖ്യാജോടികൾ ഗുണിക്കുക; ഈ ഗുണ നഫലങ്ങളുടെ വ്യത്യാസം കണക്കാക്കുക:

$$3 \times 19 = 57 \qquad \qquad 17 \times 5 = 85$$

$$17 \times 5 = 85$$

$$85 - 57 = 28$$

- i) ഒൻപത് സംഖൃകളുള്ള മറ്റു സമചതുരങ്ങളെടുത്ത് ഇതുപോലെ ചെയ്യുക.
- ii) എല്ലാ സമചതുരത്തിലും വ്യത്യാസം 28 കിട്ടുന്നതിന്റെ കാരണം, ബീജഗണിതമുപയോഗിച്ച് വിശദീകരിക്കുക. (നടുവിലെ സംഖ്യ x എന്നെടുക്കുന്നതാണ് സൗകര്യം)

തിരിഞ്ഞുനോക്കുമ്പോൾ

പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
 രണ്ട് അധിസംഖൃകളുടെ തുകയെ തുക കൊണ്ട് ഗുണിക്കുന്നതിനുള്ള മാർഗം വിശ ദീകരിക്കുന്നു. 			
രണ്ട് അധിസംഖൃകളുടെ തുകയുടെ വർഗം കാണുന്ന രീതി ജ്യാമിതീയമായും ബീജഗണി തരീതിയിലും വ്യഖ്യാനിക്കാൻ കഴിയുന്നു.			
രണ്ടു അധിസംഖ്യകളുടെ വൃത്യാസത്തിന്റെ വർഗം കാണുന്ന രീതി ജ്യാമിതീയമായും ബീജഗണിതരീതിയിലും വ്യഖ്യാനിക്കാൻ കഴി യുന്നു.			
• വർഗസംഖൃകളുടെ പ്രത്യേകതകൾ ബീജഗ ണിതം ഉപയോഗിച്ച് വൃഖ്യാനിക്കുന്നു.			
 പൂർണവർഗങ്ങളുടെ വ്യത്യാസമായി എഴു താൻ കഴിയുന്ന സംഖ്യകളുടെ പ്രത്യേകത വിശദീകരിക്കുന്നു. 			
ഒരേ തുകയുള്ള സംഖ്യാജോടികളിൽ ഏറ്റവും കൂടിയ ഗുണനഫലമുള്ള സംഖ്യാജോടികളെ കണ്ടെത്തുന്നു.			
സംഖൃാബന്ധങ്ങളെ ബീജഗണിതം ഉപയോ ഗിച്ച് പൊതുവായി പറയുന്നു.			

പലിശയ്ക്കും പലിശ

രണ്ടു ബാങ്കുകളുടെ പരസ്യം നോക്കൂ.

10% പലിശ 24 മാസംകൊണ്ട് 1 ലക്ഷം രൂപ 1.20 ലക്ഷം രൂപയാകും.

10% പലിശ

24 മാസം കൊണ്ട് 1 ലക്ഷംരൂപ 1.21 ലക്ഷം രൂപയാകും.

രണ്ട് ബാങ്കിലും ഒരേ പലിശനിരക്കാണ്. ഒരേ തുക, ഒരേ കാലത്തേക്ക് നിക്ഷേപിച്ചാൽ, കിട്ടുന്ന തുകയ്ക്ക് വൃത്യാസം വരുന്നതെന്തുകൊണ്ട്?

പലിശ കണക്കാക്കുന്നത് പലവിധമാണ്. പലിശ കണക്കാക്കുന്നതിനുള്ള ഒരു രീതി ഏഴാംക്ലാസിൽ പഠിച്ചതോർമയുണ്ടല്ലോ?

ഉദാഹരണമായി 1000 രൂപ 2 വർഷത്തേക്ക് നിക്ഷേപിക്കുന്നു. വാർഷിക പലിശനിരക്ക് 10%.

ഓരോ വർഷവും എത്ര രൂപ പലിശ കിട്ടും?

മറ്റൊരു കണക്ക് നോക്കാം.

10% വാർഷിക നിരക്കിൽ പലിശ കണക്കാക്കുന്ന ഒരു ബാങ്കിൽ അനു വും മനുവും 15000 രൂപ വീതം നിക്ഷേപിച്ചു. ഒരു വർഷം കഴിഞ്ഞ പ്പോൾ മുതലും പലിശയും അനു പിൻവലിച്ചു. പിൻവലിച്ച തുക മുഴു വൻ അന്നുതന്നെ വീണ്ടും നിക്ഷേപിച്ചു. വീണ്ടും ഒരു വർഷം കഴിഞ്ഞ പ്പോൾ രണ്ടുപേരും തുക പിൻവലിച്ചു. ആർക്കാണ് കൂടുതൽ പണം കിട്ടി യത്? എത്ര കൂടുതൽ?

2 വർഷത്തേക്കുള്ള പലിശയാണ് മനുവിന് കിട്ടുന്നത്; അതായത്,

$$15000 \times \frac{10}{100} \times 2 = 3000$$

അപ്പോൾ രണ്ടു വർഷം കഴിഞ്ഞ് മനുവിന് ആകെ എത്ര രൂപ കിട്ടും?

$$15000 + 3000 = 18000$$
 രൂപ.

അനുവിന്റെ കാര്യമോ?

ഒരു വർഷം കഴിഞ്ഞപ്പോൾ എത്ര പലിശ കിട്ടി?

$$15000 \times \frac{10}{100} = 1500$$

അപ്പോൾ എത്ര രൂപയാണ് പിൻവലിച്ചത്?

$$15000 + 1500 = 16500$$
 രൂപ

ഈ തുകയാണ് വീണ്ടും നിക്ഷേപിച്ചത്.

അപ്പോൾ രണ്ട് വർഷം കഴിഞ്ഞ് എത്ര പലിശ കിട്ടും?

$$16500 \times \frac{10}{100} = 1650$$

ആകെ എത്ര രൂപയായി?

$$16500 + 1650 = 18150$$
 രൂപ

അനുവിന് എത്ര കൂടുതൽ കിട്ടി?

ഒന്നാം വർഷം പലിശയായി ലഭിച്ച 1500 രൂപയുടെ പലിശയാണ് അധികം കിട്ടിയത്.

പല നിക്ഷേപപദ്ധതികളിലും ഇങ്ങനെ ഓരോ കൊല്ലവും (തുക പിൻവ ലിച്ച് വീണ്ടും നിക്ഷേപിക്കാതെതന്നെ) പലിശ മുതലിനോടുകൂട്ടി, അടുത്ത കൊല്ലത്തേക്കുള്ള പലിശ കണക്കാക്കാറുണ്ട്.

അതായത്, ഈ രീതിയിൽ പലിശയ്ക്കും പലിശ കിട്ടുന്നു.

ഇത്തരത്തിൽ ഓരോ കാലയളവിലും മുതൽ മാറിക്കൊണ്ടിരിക്കുന്നു; ലഭിക്കുന്ന പലിശയും മാറുന്നു. ഈ രീതിയിൽ കണക്കാക്കുന്ന പലി ശയെ കൂട്ടുപലിശ (compound interest) എന്നു പറയുന്നു. മുതലിൽ മാറ്റ മില്ലാതെ ഓരോ വർഷവും കിട്ടുന്ന പലിശയെ സാധാരണപലിശ (simple interest) എന്നു പറയുന്നു.

രണ്ടാമത്തെ ബാങ്കിൽ നിക്ഷേപിച്ചാൽ കൂടുതൽ കിട്ടുന്നത് എന്തുകൊ ണ്ടാണെന്ന് മനസിലായില്ലേ?

5% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ സുമേഷ് 10000 രൂപ നിക്ഷേപിച്ചു. 2 വർഷം കഴിയുമ്പോൾ അയാൾക്ക് എത്ര രൂപ കിട്ടും?

ഒന്നാം വർഷത്തെ മുതൽ = 10000 രൂപ

ഒന്നാം വർഷത്തെ പലിശ =
$$10000 imes \frac{5}{100}$$

= 500

രണ്ടാം വർഷത്തെ മുതൽ = 10000 + 500

= 10500

ഗണിതം

രണ്ടാം വർഷത്തെ പലിശ
$$= 10500 imes \frac{5}{100}$$
 $= 525$

രണ്ട് വർഷം കഴിയുമ്പോൾ സുമേഷിന് കിട്ടുന്ന തുക

$$= 10500 + 525$$

- = 11025 രൂപ
- (1) 8% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ സന്ദീപ് 25000 രൂപ നിക്ഷേപിച്ചു. രണ്ട് വർഷം കഴിയുമ്പോൾ എത്ര രൂപ തിരികെ കിട്ടും?
- (2) 12% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ നിന്ന് തോമസ് 15000 രൂപ കടമെടുത്തു. 2 വർഷം കഴിഞ്ഞപ്പോൾ 10000 രൂപ തിരിച്ചടച്ചു. മൂന്നാം വർഷാവസാനം കടം തീർക്കാൻ എത്ര രൂപ തിരിച്ചടക്കണം?
- (3) 5% വാർഷിക നിരക്കിൽ ഒരു തുകയ്ക്ക് 2 വർഷത്തേക്ക് സാധാര ണപലിശയായി 200 രൂപ ലഭിച്ചു. അതേ തുകയ്ക്ക് അതേ നിര ക്കിൽ 2 വർഷത്തേക്ക് ലഭിക്കുന്ന കുട്ടുപലിശ എത്രയാണ്?

മറ്റൊരു രീതി

5% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കിയാൽ, 10000 രൂപ 2 വർഷംകൊണ്ട് 11025 രൂപയാകുമെന്ന് കണ്ടല്ലോ. ഇതു കണ്ടുപിടിച്ച

രീതി ഒന്നുകൂടി നോക്കുക. ആദ്യത്തെ വർഷം 10000 രൂപയുടെ $\frac{5}{100}$ ഭാഗമാണ് പലിശ. ഇങ്ങനെ കിട്ടുന്ന 500 രൂപ, 10000 രൂപയുമായി കൂട്ടി

ക്കിട്ടുന്ന 10500 രൂപയുടെ $\frac{5}{100}$ ഭാഗമാണ് രണ്ടാംവർഷത്തെ പലിശ.

ഈ 525 രൂപ, 10500 രൂപയുമായി കൂട്ടി കിട്ടുന്ന തുകയായ 11025 രൂപ യാണ് രണ്ട് വർഷത്തിനുശേഷം കിട്ടുന്നത്.

ഒരു വർഷം കൂടി നിക്ഷേപം തുടർന്നാലോ?

മൂന്ന് വർഷം കഴിഞ്ഞ് എത്ര രൂപ കിട്ടുമെന്ന് കണക്കാക്കാൻ 11025 രൂപ യുടെ $\frac{5}{100}$ ഭാഗം അതിനോടു കൂട്ടണം.

ഇങ്ങനെ ഓരോ വർഷം കഴിയുമ്പോഴും, അപ്പോഴുള്ള തുകയുടെ $\frac{5}{100}$ ഭാഗം അതിനോടു കൂട്ടണം. ബീജഗണിതം ഉപയോഗിച്ച് പറഞ്ഞാൽ x എന്ന തുകയുടെ $\frac{5}{100}$ ഭാഗം x നോടു കൂട്ടണം.

$$x + \frac{5}{100} x = \left(1 + \frac{5}{100}\right) x$$

എന്നെഴുതാമല്ലോ. അപ്പോൾ ഓരോ വർഷവും $\frac{5}{100}$ ഭാഗം കൂട്ടുക എന്ന തിനുപകരം $1+\frac{5}{100}$ കൊണ്ട് ഗുണിച്ചാൽ മതി. അതായത്,

ഒരു വർഷം കഴിഞ്ഞ് കിട്ടുന്നത് $10000\left(1+\frac{5}{100}\right)$

2 വർഷം കഴിഞ്ഞ് കിട്ടുന്നത് $10000\left(1+rac{5}{100}
ight)^{-1}$

3 വർഷം കഴിഞ്ഞ് കിട്ടുന്നത് $10000\left(1+\frac{5}{100}\right)^3$

എന്നിങ്ങനെ തുടരാം. ബീജഗണിതമുപയോഗിച്ച് പറഞ്ഞാൽ, n വർഷ ങ്ങൾക്കുശേഷം കിട്ടുന്നത് $10000\left(1+\frac{5}{100}\right)$.

നിക്ഷേപിക്കുന്ന തുകയോ പലിശനിരക്കോ മാറിയാലും ഇതേ രീതി യിൽ അവസാനം കിട്ടുന്ന തുക കണക്കാക്കാം.

പൊതുവെ പറഞ്ഞാൽ

p രൂപ $r\,\%$ വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന നിക്ഷേപ പദ്ധതിയിൽ, n വർഷം കഴിഞ്ഞ് കിട്ടുന്നത്

$$p\left(1+\frac{r}{100}\right)^n$$
 രൂപയാണ്.

ഇനി ഈ കണക്ക് നോക്കൂ.

9% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ നാൻസി 15000 രൂപ നിക്ഷേപിച്ചു. 2 വർഷം കഴിയുമ്പോൾ എത്ര രൂപയാകും?

ഇപ്പോൾ കണ്ടതനുസരിച്ച്, ഇതു നേരിട്ടു കണക്കാക്കാമല്ലോ.

$$15000 \left(1 + \frac{9}{100}\right)^2 = 15000 \left(\frac{100 + 9}{100}\right)^2$$
$$= 15000 \times \left(\frac{109}{100}\right)^2 = 15000 \times (1.09)^2$$
$$= 15000 \times 1.1881$$

= 17821.5 = 17821 രൂപ 50 പൈസ.

പണമിടപാടുകളിൽ 50 പൈസ മുതൽ 1 രൂപ വരെ ഉള്ളവയെ 1 രൂപ യായി കണക്കാക്കുകയാണ് പതിവ്. 50 പൈസയേക്കാൾ കുറവായവ കണക്കിലെടുക്കുകയുമില്ല.

അപ്പോൾ നാൻസിക്ക് 2 വർഷം കഴിയുമ്പോൾ 17822 രൂപ കിട്ടും.

$$109 \times 109 = (100 + 9)^{2}$$

$$= 10000 + 1800 + 81$$

$$= 11881$$

$$1.09^{2} = 1.1881$$

ഗണിതം

- (1) 6% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ അനസ് 20000 രൂപ നിക്ഷേപിച്ചു. 3 വർഷത്തിന് ശേഷം അനസിന് ലഭിക്കുന്ന തുക എത്ര?
- (2) 10% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ ദിയ 8000 രൂപ നിക്ഷേപിച്ചു. 2 വർഷം കഴിഞ്ഞപ്പോൾ 5000 രൂപ പിൻവലിച്ചു. വീണ്ടും ഒരു വർഷം കഴിഞ്ഞാൽ ദിയയുടെ കണ ക്കിൽ എത്ര രൂപ ഉണ്ടാകും?
- (3) 11% വാർഷിക നിരക്കിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ നിന്നും വരുൺ 25000 രൂപ കടമെടുത്തു. 2 വർഷം കഴിഞ്ഞപ്പോൾ വരുൺ 10000 രൂപ തിരിച്ചടച്ചു. വീണ്ടും ഒരു വർഷം കഴിഞ്ഞാൽ കടം തീർക്കാൻ എത്ര രൂപ കൂടി അടയ്ക്കണം?

കാലം മാറുന്നു

ഓരോ വർഷം കഴിയുമ്പോഴും പലിശ മുതലിനോട് കൂട്ടുന്നതുപോലെ ഓരോ 6 മാസം കഴിയുമ്പോഴും പലിശ മുതലിനോടുകൂടി കൂട്ടുന്ന രീതിയും നിലവിലുണ്ട്. ഇത്തരത്തിൽ കൂട്ടുപലിശ കണക്കാക്കുന്ന സമ്പ്രദായത്തെ അർധവാർഷിക രീതി എന്നാണ് പറയുന്നത്.

അർധവാർഷികമായി കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ അമ്പിളി 12000 രൂപ നിക്ഷേപിച്ചു. 8% ആണ് വാർഷിക പലിശനിരക്ക്. ഒരു വർഷം കഴിയുമ്പോൾ അമ്പിളിക്ക് എത്ര രൂപ കിട്ടും?

അർധവാർഷികമായി പലിശ കണക്കാക്കുന്നതിനാൽ വർഷത്തിൽ 2 തവണ പലിശ കണ്ടുപിടിക്കണം. ഒരു വർഷത്തേക്ക് 8% പലിശയായതി നാൽ 6 മാസത്തേക്ക് 4% ആണ് പലിശ.

ആദ്യത്തെ 6 മാസത്തെ പലിശ =
$$12000 imes \frac{4}{100}$$
 = 480 രൂപ

ഇത് 12000 നോട് കൂട്ടിയാണ്, അടുത്ത 6 മാസത്തേക്കുള്ള പലിശ കണ ക്കാക്കുന്നത്.

$$12000 + 480 = 12480$$

അടുത്ത
$$6$$
 മാസത്തെ പലിശ $= 12480 imes rac{4}{100}$ $= 499.20$ രൂപ $= 499$ രൂപ $= 20$ പൈസ.

ഇനി ഈ കണക്കിൽ 1 $\frac{1}{2}$ വർഷം കഴിയുമ്പോൾ അമ്പിളിക്ക് എത്ര രൂപ കിട്ടുമെന്നാണ് കാണേണ്ടതെങ്കിലോ?

ഓരോ 6 മാസവും $\frac{4}{100}$ ഭാഗം കൂട്ടണം; അതായത് $1+\frac{4}{100}$ കൊണ്ട് ഗുണിക്കണം. അപ്പോൾ 1 $\frac{1}{2}$ വർഷം കഴിയുമ്പോൾ കിട്ടുന്നത്.

$$12000 \times \left(1 + \frac{4}{100}\right)^3 = 12000 \times \left(\frac{104}{100}\right)^3 = 12000 \times (1.04)^3$$

എന്ന് നേരിട്ട് കണക്കാക്കാം.

ഇത് കാൽക്കുലേറ്റർ ഉപയോഗിച്ച് ചെയ്താൽ 13498.368 എന്നു കിട്ടും. അപ്പോൾ കിട്ടുന്ന തുക 13498 രൂപ.

ഇതുപോലെ പല കാലങ്ങളിലേക്കുള്ള തുക കണക്കാക്കാം.

ഓരോ മൂന്നു മാസവും കൂട്ടുപലിശ കണക്കാക്കുന്ന പദ്ധതികളുമുണ്ട്. ഇതിന് പാദവാർഷികമായി പലിശ കണക്കാക്കുക എന്നാണ് പറയുന്നത്.

പാദവാർഷികമായി പലിശ കണക്കാക്കുന്ന, ബാങ്കിലാണ് അമ്പിളി പണം നിക്ഷേപിച്ചതെങ്കിലോ?

ഓരോ മൂന്ന് മാസവും 2% പലിശ കിട്ടും.

ഒരു വർഷത്തിനുശേഷം അമ്പിളിക്ക് കിട്ടുന്ന തുക

$$12000 \times \left(1 + \frac{2}{100}\right)^4 = 12000 \times \left(\frac{102}{100}\right)^4 = 12000 \times (1.02)^4$$

കാൽക്കുലേറ്റർ ഉപയോഗിച്ച് കണക്കാക്കി നോക്കൂ.

- (1) 5000 രൂപ അർധവാർഷികമായി കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ അരുൺ നിക്ഷേപിച്ചു. 5000 രൂപ പാദവാർഷികമായി കൂട്ടു പലിശ കണക്കാക്കുന്ന ബാങ്കിൽ മോഹൻ നിക്ഷേപിച്ചു. രണ്ട് ബാങ്കും 6% വാർഷിക നിരക്കാണ് നൽകുന്നത്. ഒരു വർഷം കഴിഞ്ഞ് രണ്ടുപേരും പണം പിൻവലിച്ചു. മോഹന് അരുണിനേ ക്കാൾ എത്ര രൂപ കൂടുതൽ കിട്ടി?
- (2) പാദവാർഷികമായി കൂട്ടുപലിശ കണക്കാക്കുന്ന ബാങ്കിൽ നിന്ന് ഒരാൾ 16000 രൂപ കടമെടുത്തു. വാർഷികനിരക്ക് 10% ആണ്. 9 മാസം കഴിയുമ്പോൾ കടം തീർക്കാൻ എത്ര രൂപ തിരിച്ചടക്കണം?

- (3) ഒരു ധനകാരൃസ്ഥാപനത്തിൽ മനു 15000 രൂപ നിക്ഷേപിക്കുന്നു. ഓരോ 3 മാസത്തിലും പലിശ കണക്കാക്കി മുതലിനോട് കൂട്ടുന്നു. വാർഷിക പലിശനിരക്ക് 8%. ഒരു വർഷം കഴിയുമ്പോൾ അയാൾക്ക് എത്ര രൂപ തിരിച്ചു കിട്ടും?
- (4) ജോൺ 2500 രൂപ ജനുവരി 1-ാം തീയതി ഒരു സഹകരണബാ ക്കിൽ നിക്ഷേപിക്കുന്നു. ബാങ്ക് അർധവാർഷികമായാണ് കൂട്ടുപലിശ കണക്കാക്കുന്നത്. വാർഷിക നിരക്ക് 6% ആണ്. ജൂലായ് 1-ാം തീയതി 2500 രൂപ ജോൺ വീണ്ടും നിക്ഷേപിക്കുന്നു. വർഷാവ സാനം ജോണിന്റെ കണക്കിൽ എത്ര രൂപ ഉണ്ടായിരിക്കും?
- (5) ഓരോ നാലു മാസത്തേയ്ക്കും കൂട്ടുപലിശ കണക്കാക്കുന്ന ഒരു ധനകാര്യസ്ഥാപനത്തിൽ റംലത്ത് 30,000 രൂപ നിക്ഷേപിക്കുന്നു. വാർഷിക നിരക്ക് 9%. ഒരു വർഷം കഴിയുമ്പോൾ റംലത്തിന് തിരിച്ച് കിട്ടുന്ന തുകയെത്രയാണ്?

കൂടിയും കുറഞ്ഞും

ചില സാധനങ്ങളുടെ നിർമാണം വർഷംതോറും ഒരു നിശ്ചിതനിരക്കിൽ കൂടാറുണ്ട്. അതുപോലെ ചില സാധനങ്ങളുടെ വിലയും വർഷംതോറും നിശ്ചിത നിരക്കിൽ കൂടുകയോ കുറയുകയോ ചെയ്യാറുണ്ട്. ഇത്തരത്തിൽ നിർമിക്കപ്പെടാവുന്ന വസ്തുക്കളുടെ എണ്ണവും വിലയുമൊക്കെ കണ ക്കാക്കുന്നതിന് കൂട്ടുപലിശ കണക്കാക്കുന്ന രീതി തന്നെ ഉപയോഗി ക്കാം.

മിക്ക ആളുകളും മൊബൈൽഫോൺ ഉപയോഗിക്കുന്നവരാണല്ലോ. അതു മായി ബന്ധപ്പെട്ട ഒരു കണക്ക് നോക്കാം.

ഒരു മൊബൈൽഫോൺ കമ്പനി ഉൽപാദനത്തിന്റെ 20% വാർഷി കമായി വർധിപ്പിക്കുന്നുവെന്നാണ് കണക്ക്. 2014 -ൽ ഏകദേശം 7 കോടി മൊബൈൽ ഫോൺ നിർമിച്ചിരുന്നുവെങ്കിൽ 2018 -ൽ എത്ര മൊബൈൽഫോണുകൾ ഉൽപാദിപ്പിക്കുമെന്നാണ് പ്രതീ ക്ഷിക്കുന്നത്?

വാർഷികമായി 20% വർധനവാണ് ലക്ഷ്യമിടുന്നത്.

കൂട്ടുപലിശയടക്കം മുതൽ കണ്ടുപിടിച്ച രീതി നോക്കാം.

2014-ൽ നിർമിച്ച ഫോണുകളുടെ എണ്ണം =7 കോടി 2018-ൽ നിർമിക്കുന്ന ഫോണുകളുടെ എണ്ണം $=70000000\left(1+\frac{20}{100}\right)^4$ കാൽക്കുലേറ്റർ ഉപയോഗിച്ച് ചെയ്തു നോക്കൂ.

- (1) ഓരോ വർഷവും 15% വീതം ഇ-വേസ്റ്റ് വർധിച്ചുകൊണ്ടിരിക്കുന്നു എന്നാണ് പഠനറിപ്പോർട്ട്. 2014-ൽ ഏകദേശം 9 കോടി ടൺ ഇ-വേസ്റ്റ് ഉണ്ടെന്നാണ് കണക്കാക്കിയിരിക്കുന്നത്. എങ്കിൽ 2020 ആകു മ്പോഴേക്കും എത്ര ടൺ ഇ-വേസ്റ്റ് ഉണ്ടാകാൻ സാധ്യതയുണ്ട്?
- (2) ഒരു ടി.വി. കമ്പനി ഒരു പ്രത്യേകയിനം ടി.വി.യുടെ വില വർഷ ന്തോറും 5% വീതം കുറയ്ക്കുന്നു. ടി.വി. യുടെ ഇപ്പോഴത്ത വില 8000 രൂപയാണെങ്കിൽ 2 വർഷം കഴിയുമ്പോൾ വില എന്തായി രിക്കും?

(3) നമ്മുടെ ദേശീയമൃഗമാണല്ലോ കടുവ. ഓരോ വർഷം കഴിയുന്തോറും ഇവയുടെ എണ്ണത്തിൽ കുറവ് വന്നുകൊണ്ടിരിക്കുന്നു. വാർഷിക മായി 3% വീതം കുറഞ്ഞുകൊണ്ടിരിക്കുന്നുവെന്നാണ് കണക്ക്. 2011-ലെ കടുവ സംരക്ഷണ അതോറിറ്റിയുടെ സെൻസസ് പ്രകാരം ഭാരതത്തിൽ 1700 കടുവകളുണ്ട്. ഇങ്ങനെ തുടർന്നാൽ 2016 ആകു മ്പോൾ എത്ര കടുവകൾ ഉണ്ടാകും?

CHECKLIST

തിരിഞ്ഞുനോക്കുമ്പോൾ

	പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
•	പലിശയ്ക്ക് കൂടി പലിശ കണക്കാക്കി കൂട്ടു പലിശ കാണുന്ന രീതി വിശദീകരിക്കുന്നു.			
•	അർധവാർഷികമായും പാദവാർഷിക മായും മറ്റ് കാലയളവിലും കൂട്ടുപലിശ കണക്കാക്കുന്ന രീതി വശദീകരിക്കുന്നു.			
•	കൂട്ടുപലിശ രീതിയിൽ മറ്റ് പ്രായോഗിക പ്രശ്നങ്ങൾക്ക് പരിഹാരം കാണുന്നു.			