

KITE VICTERS ONLINE CLASS 16-07-2020

PHYSICS - X-PART-1 CLASS 09

<u>Magnetic field</u>

* This region around a magnet where the influence is felt is the magnetic field.

2

Magnetic Effect of Electric Current

* The direction of the magnetic field is from North pole to South pole. (N \longrightarrow S)

<u>Magnetic Line of force</u>

* Magnetic field represented by Magnetic line of force
<u>Magnetic Flux</u>

* Total number of magnetic line of force around a magnet.

<u>Magnetic Flux Density</u>

* The number of magnetic lines of force passing normal to unit area is the magnetic flux density of that region.

<u>Electric current</u>

* The direction of flow of current from positive to negative.(The direction of flow of electrons from negative to positive)

2

KITE VICTERS ONLINE CLASS 16-07-2020

<u>A magnetic field around a current carrying conductor</u>

1. Conductor above the magnetic needle

No.	Conductor above the magnetic needle	Direction of motion of North Pole (N) of the magnetic needle clockwise/anticlockwise
1	Direction of current from A to B	Anticlockwise
2	Direction of current from B to A	Clockwise
Table 2.1		

2. Conductor below the magnetic needle

No.	Conductor below the magnetic needle	Direction of motion of North Pole (N) of the magnetic needle clockwise/anticlockwise
1	Direction of current from A to B	Clockwise
2	Direction of current from B to A	Anticlockwise
Table 2.2		

KITE VICTERS ONLINE CLASS 16-07-2020

1. What might be the reason for the deflection of the magnetic needle?

* <u>A magnetic field is developed around a</u> <u>current carrying conductor.</u> The magnetic needle is deflected as a result of the mutual action of this magnetic field and that around the magnetic needle.

2.What are the factors influencing the deflection of the magnetic needle?

* The direction of the current.* The position of the conductor.

