2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) Angle in the semicircle is 90°
b) Angle outside the semicircle is less than 90°
c) Angle inside the semicircle is greater than 90°

Worksheet16

1) $A B C$ is a triangle in which $A B=A C=B C$

a) What are the measure of its angles?
b) What is the position of the vertex C based on the circle with diametre $A B$? 15 it inside ,outside or on the circle.
a) 60°
b) Outside the circle
2) In the figure $A B$ is the diametre of the circle. $A C$ and $P D$ are perpendicular to $C D$

1
a) What is the measure of angle $A P B$?
b) Suggest a suitable name to $A C D P$
c) If $A P=8 \mathrm{~cm}$ and $B P=6 \mathrm{~cm}$ then what is the radius of this circle?

Answers

a) $\angle A P B=90^{\circ}$:Angle in the semicircle
b) $\angle A P D=180-90=90^{\circ}$, Angles of $A C D P$ are $90^{\circ} A C D P$ is a square.
c) $A P B$ is a right trangle. $A B=\sqrt{8^{2}+6^{2}}=10$. Radius $=5 \mathrm{~cm}$
3) O is the centre of the circle with diametre $A B$.Another circle is drawn with $A O$ as the diametre

a) What are the measure of $\angle A P O, \angle A C B$
b) Outer circle has radius 5 cm and $B C=8 \mathrm{~cm}$. What is the length $O P$?
c) Is $A P=P C$? Why?
d) What is the length of $A C$?

Answers

a) 90°. Reason $\angle A P O, \angle A C B$ are the angles in the semicircle
b) Triangle $A P O$,triangle $A C B$ are similar. $\frac{A O}{A B}=\frac{O P}{B P}$
$\frac{5}{10}=\frac{O P}{8}, O P=4 \mathrm{~cm}$
c) $A C$ is the chord of big circle. $O P$ is perpendicular from centre to this chord. $O P$ bisect $A C$. Therefore $A P=P C$
d) $A P=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm} \cdot A C=6 \mathrm{~cm}$
4) Draw a circle of radius 3 cm and construct a rectangle with vertices on the circle. One side of the rectangle should be 4 cm . What is the lengh of other side?(Write the measurement)

Answers

a) Draw circle. Diametre $A B=6 \mathrm{~cm}$. Draw an of radius 4 cm , centre at A which cut the circle at C. Join $A C$ and $B C$
b) Draw an of radius 4 cm , centre at B which cut the circle at D in the other side of the diametre at D. Join $B D$ and $A D$
c) Angle $A C B$, angle $A D B$ are 90° each. $A C B D$ is a rectangle
d) Measure the other side. $B C=\sqrt{6^{2} 4^{2}}=\sqrt{20}=2 \sqrt{5} \mathrm{~cm}$
5) Sides of triangle $A B C$ are $A B=5 \mathrm{~cm}, A C=12 \mathrm{~cm}, B C=13 \mathrm{~cm}$
a) What kind of triangle is this ?
b) What is the position of A based on the circle with diametre $B C$?
c) What is the position of C based on the circle with diametre $A B$?
d) What is the position of B based on the circle with diametre $A B$?

Answers

a) $5^{2}+12^{2}=13^{2}$

This is a right triangle
b) In triangle $A B C$ angle $A=90^{\circ} . A$ is on the circle
c) One angle is 90° and other two angles are less than $90^{\circ} . \angle C<90^{\circ}$,therefore C is outside the circle
d) $\angle B<90^{\circ} . B$ is outside the circle.

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) Angle in the semicircle is 90°
b) Angle outside the semicircle is less than 90°
c) Angle inside the semicircle is greater than 90°

Worksheet17

1) In the figure $A B$ is the diametre of a semicircle.Three angles x, y, z are marked outside, on the semicircle and inside the semicircle.

a) What is the value of y ?
b) If x, y, z are in an arithmetic sequence,then what is $x+z$?
c) If the common difference of the sequence is 50 then find x and z

Answers

a) $y=90^{\circ}$
b) $x+z=2 \times 90=180^{\circ}$ (Refer the propery of arithmetic sequence)
c) $d=50 \therefore x=90-50=40^{\circ}, z=90-50=140^{\circ}$
2) a) Draw a circle of radius 3 cm . Construct a square with vertices are on the circle.
b) What is the length of its side?
c) Calculate the area of the square.

Answers

a) Draw a circle of radius 3 cm and diametre $A B$.
b) Draw another diametre $C D$ perpendicular to $A B$. Join the end points of the diametre . $A C B D$ will be a square
c) Side of the square $A C=\sqrt{3^{2}+3^{2}} \stackrel{1}{=} 3 \sqrt{2} \mathrm{~cm}$. Area $=3 \sqrt{2} \times 3 \sqrt{2}=18 \mathrm{sq} . \mathrm{cm}$
3) In triangle $A B C, A B=A C$.A circle is drawn with one of these sides as diametre.Prove that the circle biscts the side $B C$

Answers

a) Circle intersect $B C$ at $P . \angle B P A=90^{\circ}$.
b) Triangle $A P B$ and triangle $A P C$ are equal triangles. $B P=C P$
4) The sides of a triangle are $\sqrt{2}, \sqrt{3}$ and $\sqrt{5}$.
a) What kind of triangle is this?
b) What is the position of the vertex opposite to the side $\sqrt{5}$ based on a circle with this side as the diametre?
c) What is the position of other two vertices based on this circle?

Answers

a) $\sqrt{2}^{2}+\sqrt{3}^{2}=\sqrt{5}^{2}$. This is a right triagle.
b) Angle opposite to the side of length $\sqrt{5} \mathrm{~cm}$ is 90°. The vertex opposite to this side is on the circle.
c) Other two angles are less than 90°. Vertex is outside the circle
5) $A B C$ is an equilateral triangle.A semicircle is drawn with diametre $A B$. Semicircle intersect the sides at P and Q.

a) What is the measure of angle $B Q C$? (Draw angle in the figure)
b) What are the angles of triangle $A B Q$ and triangle $B Q C$
c) Prove that the semicircle bisects the side $A B$ and $A C$

Answers

a) Draw a rough figure. $\angle B Q C=90^{\circ}$.(Angle in the semicircle)
b) $\angle A=60^{\circ}, \angle A B Q=30^{\circ}, \angle A Q B=90^{\circ}, \angle Q B C=30^{\circ}, \angle C=60^{\circ}$
c) $B Q$ is the altitude of the equilateral trangle. Therefore $A Q=C Q$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) An arc of a circle can make three type of angles. Angle on the arc, angle at the centre and angle in the complement
b) Angle formed by the arc in the complement is half the angle at the centre
c) Sum of the angles at the centre and in the complement is 180°
d) Angles on an arc are equal

Worksheet18

1) In the figure $\angle B D E=40^{\circ}$

a) What is the measure of angle $A D B$?
b) Wha is the measure of angle $A C B$?
c) What is the measure of angle $A O B$?

Answers

a) $\angle A D B=180-40=140^{\circ}$
b) $\angle A C B=180-140=40^{\circ}$
c) $\angle A O B=2 \times 40=80^{\circ}$
2) Triangle $O A B$ is an equilateral triangle

a) What is the measure of angle $A O B$?
b) What is the measure of angle $A P B$?
c) What is the measure of angle $A Q B$?

Answers

a) $\angle A O B=60^{\circ}$
b) $\angle A P B=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
c) $\angle A Q B=180-30=150^{\circ}$
3) Draw a circle of radus 3 cm .Construct the angles 30° and 150° with vertices on the circle using compasses and scale only.

Answers

* Draw a circle of radius 3 cm .Mark the center of the circle as O
\star Mark a point A on the circle.Draw the radius $O A$.
\star With A as the centre and $O A$ as radius, draw an arc which cut the circle at B. Join $O B$, $\angle A O B=60^{\circ}$
\star Mark a point P on the complement of the arc $A B$, which makes 60° at the center. $\angle A P B=$ $\frac{1}{2} \times 60=30^{\circ}$
\star Mark a point Q on the $\operatorname{arc} A B . \angle A Q B=180-30=150^{\circ}$

4) In the figure $\angle A B C, \angle A O C, \angle A D C$ are in an arithmetic sequence

a) What is the relation between angle $A B C$ and angle $A O C$
b) What is the relation between angle $A B C$ and $A D C$
c) Find the measure of these angles

Answers

a) $\angle A O C=2 \times \angle A B C$
b) $\angle A B C+\angle A D C=180^{\circ}$
c) Let $\angle A B C=x, \angle A O C=y, \angle A D C=z$
x, y, z are in an arithmetic sequence.Therefore $2 y=x+z$
From the relations noted above , $y=2 x, x+z=180$

$$
\begin{array}{r}
2 y=x+z \\
2 \times 2 x=x+z=180 \\
4 x=180, x=45
\end{array}
$$

$x=45, y=90, z=135$.
$\angle A B C=45^{\circ}, \angle A O C=90^{\circ}, \angle A D C=135^{\circ}$
5) $A B C D$ is a square .The diagonals $A C$ and $B D$ intersect at O.

a) What is the measure of angle $A O D$?
b) What is the measure of angle $A P D$?
c) What is the measure of angle $A Q D$

Answers
a) Diagonals of a square are perpendicular to eachother. $\angle A O D=90^{\circ}$
b) $\angle A P D=45^{\circ}$
c) $\angle A Q D=180-45=135^{\circ}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) An arc of a circle can make three type of angles. Angle on the arc, angle at the centre and angle in the complement
b) Angle formed by the arc in the complement is half the angle at the centre
c) Sum of the angle of an arc and its complement is 180°
d) Angles on an arc are equal

Worksheet20

1) A, B, C, D are four points on a circle.

The chords $A C, B D$ intersect at E.ff $\angle B E C=130^{\circ}, \angle E C D=20^{\circ}$ then

a) What is the measure of $\angle C E D$?
b) What is the measure of $\angle C D E$?
c) What is the measure of $\angle B A C$?

Answers

a) $\angle C E D=180-\angle B E C$
$\angle C E D=180-130=50^{\circ}$
b) $\angle C D E=180-(50+20)=180-70=110^{\circ}$
c) $\angle B A C=\angle B D C$
$\angle B A C=110^{\circ}$
2) O is the centre of the circle.lf $\angle A C B=20^{\circ}, \angle C A B=30^{\circ}$ then

a) What is the measure of $\angle A O B$?
b) What is the measure of $\angle C O B$?
c) What is the measure of $\angle A O C$?
d) What is the measure of $\angle A D C$?
e) What is the measure of $\angle A B C$?

Answers
a) Since $\angle A C B=20^{\circ}, \angle A O B=2 \times \angle A C B=40^{\circ}$
b) Since $\angle C A B=30^{\circ}, \angle C O B=2 \times \angle A C B=60^{\circ}$
c) $\angle A O C=40+60=100^{\circ}$
d) $\angle A D C=\frac{1}{2} \times A O C=50^{\circ}$
e) $\angle A B C=150-50=130^{\circ}$
3) O is the centre of the circumcircle of triangle $A B C$.

If $\angle B A C=y, \angle O B C=x$ then

a) What is the measure of $\angle B C O$?
b) What is the measure of $\angle B O C$?
c) Prove that $x+y=90^{\circ}$

Answers

a) Since $O B=O C$ opposite angles of these sides in triangle $O B C$ are equal. $\angle B C O=x$.
b) $\angle B O C=180-2 x$
c) We know that $\angle B O C=2 \times \angle B A C$
$180-2 x=2 y, 2 x+2 y=180, x+y=90^{\circ}$
4) In triangle $A B C, \angle A=70^{\circ}, \angle B=80^{\circ}$. The vertices of the triangle are on the circumcircle of the triangle .Radius of the circumcircle is 3 cm .Construct the triangle.

Answers

\star Draw a circle of radius 3 , mark its centre as O and a point A on the circle. Draw the radius $O A$
\star Mark a point B on the circle such that $\angle A O B=2 \times 70=140^{\circ}$
\star Mark a point C on the circle such that $\angle B O C=2 \times 80=160^{\circ}$
\star Draw triangle $A B C$.
5) P and Q are the centre of the circles shown in the figure. Circles intersect at B and C.If $\angle A Q B=130^{\circ}$ then

a) What is the measure of $\angle A C B$?
b) What is the measure of $\angle B C D$?
c) What is the measure of $\angle B P D$

Answers

a) $\angle A C B=\frac{1}{2} \times 130=65^{\circ}$
b) $\angle B C D=180-65=115^{\circ}$
c) The central angle of the complement of the $\operatorname{arc} B C D$ is $2 \times 115=230^{\circ}$. Therefore $\angle B P D=360-230=130^{\circ}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) An arc of a circle can make three type of angles. Angle on the arc, angle at the centre and angle in the complement
b) Angle formed by the arc in the complement is half the angle at the centre
c) Sum of the angle of an arc and its complement is 180°
d) Angles on an arc are equal

Worksheet21

1) In the figure $\angle B A C=x, \angle C B O=y, O$ is the centre of the circle.

a) What is the measure of $\angle B C O$?
b) What is the measure of $\angle B O C$?
c) What is the measure of $\angle B P C$?
d) Prove that $x-y=90^{\circ}$?

Answers

a) $\angle B C O=y$
(In triangle $B C O, O B=O C$. Angles opposite to equal sides are equal.)
b) $\angle B O C=180-2 y$
c) $\angle B P C=\frac{1}{2} \times \angle B O C=\frac{1}{2} \times(180-2 y)=90-y$
d) $\angle B A C+\angle B P C=180, x+90-y=180, x-y=180-90=90^{\circ}$
2) In the figure O is the centre of the circle .lf $\angle B C O=55^{\circ}, \angle B A O=20^{\circ}$ then

a) What is the measure of $\angle O B C$?
b) What is the measure of $\angle B O C$?
c) What is the measure of $\angle A O C$?
d) What is the measure of $\angle A B C$?

Answers

a) $\angle O B C=55^{\circ}$
(In triangle $O B C, O B=O C$. Angles opposite to equal sides are equal.)
b) $\angle B O C=180-(55+55)=180-110=70^{\circ}$
c) In triangle $A O B, \angle B=20^{\circ}, \angle A C B=180-40=140^{\circ}$
$\angle A O C=140-70=70^{\circ}$
d) $\angle A B C=\frac{1}{2} \times 70=35^{\circ}$
3) In the figure O is the centre of the circle.lf $\angle B A C=32^{\circ}$ then

a) Find the angles of triangle $O A B$
b) What is the measure of $\angle D O C$?
c) Find x

Answers

a) In triangle $O A B, O A=O B$. Therefore $\angle B=32^{\circ}, \angle A O B=180-64=116^{\circ}$
b) $\angle D O C=116^{\circ}$
(Opposite angles are equal)
c) In triangle $O C D, \angle D=x$

$$
x+x+116=180,2 x=64, x=32
$$

4) This is the picture of a clock face.1, 8,5 are joined to make a triangle.Find the angles of this triangle.

Answers

* The central angle of the arc in between two numbers(say 1,2) is $\frac{1}{12} \times 360=30^{\circ}$. The central angle of the arc between 1 and 5 is $4 \times 30=120^{\circ}$.
The angle of the triangle with vertex at 8 is $\frac{1}{2} \times 120=60^{\circ}$
\star The central angle of the arc between 8 and 5 is $3 \times 30=90^{\circ}$.
The angle of the triangle with vertex at 1 is $\frac{1}{2} \times 90=45^{\circ}$
\star The central angle of the arc between 8 and 1 is $5 \times 30=150^{\circ}$.
The angle of the triangle with vertex at 5 is $\frac{1}{2} \times 150=75^{\circ}$

5) Angles of a triangle are in the ratio1:2:3. Vertices of this triangle are on a circle of radius 3 cm .Construct the triangle

Answers

Draw a circle of radius 3 cm
Divide the angle around the centre in the ratio $1: 2: 3$.
The resulting angles are $60^{\circ}, 120^{\circ}, 180^{\circ}$ by drawing radii. Join the ends of the radii on the circle .

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) If the vertices of a qudrilateral are on a circle we call it cyclic quadrilateral.
b) The sum of the opposite angles of a cyclic quadrilateral is 180°.
c) The converse of the above statement is also true. If the sum of the opposite angles of a quadrilateral is 180° it will be a cyclic quadrilateral.
d) Square, rectangle and isosceles trapezium are cyclic .

Worksheet23

1 In the figure $B D=C D, \angle D B C=25^{\circ}$

a) What is the measure of $\angle B D C$?
b) What is the measure of $\angle B A C$?
c) What is the measure of $\angle E B C$?

Answers

a) In triangle $B D C, B D=C D$. Angle opposite to these sides are equal $. \angle B C D=25^{\circ}$ $\angle B D C=180-(25+25)=130^{\circ}$
b) $\angle B A C=180-130=50^{\circ}$
c) $\angle B E C=\angle B A C=180-130=50^{\circ}, \angle E B C=180-(90+50)=180-140=40^{\circ}$
2) Two circles intersect at B and E as in the figure. The points $A-B-C$ are along a line. Also the points $D-E-F$ are also on a line.

a) Prove that $A D$ is parallel to $C F$
b) If $A C=D F$ suggest a suitable name to the quadrilateral $A D F C$
c) Prove that $A D F C$ is a cyclic quadrilateral.

Answers

a) Draw $B E . A B E D$ is a cyclic quadrilateral.

If $\angle D A B=x$ then $\angle B E D=180-x, \angle B E F=180-(180-x)=x$.
$B E F C$ is cyclic $. \angle C=180-x$.
In quadrilateral $A D F C, \angle A+\angle C=x+180-x=180^{\circ}$
Co interior angle sum is $180^{\circ} . A D$ is parallel to $C F$
b) $A D F C$ is a trapezium .Since $A C=D F$ is an isosceles trapezium .
c) Angles at the ends of parallel sides of an isosceles trapezium are equal .Since $\angle A=\angle D$ and $\angle A+\angle C=180^{\circ}$ then $\angle D+\angle C=180^{\circ}$.
$A D F C$ is a cyclic quadrilateral.
3) $A B$ is the diametre of the circle. $C D$ is a chord of length equal to radius of the circle.

a) What is the measure of $\angle C O D$?
b) What is the measure of $\angle C B D$?
c) What is the measure of $\angle D C P$?
d) Find the measure of $\angle C P D$

Answers

a) Draw $O C, O D, O C D$ is an equilateral traingle $. \angle C O D=60^{\circ}$
b) $\angle C B D=\frac{1}{2} \times 60=30^{\circ}$
c) $\angle B C P=90^{\circ}$ (angle in the semicircle). $\therefore B C P=90^{\circ}$.
d) In traingle $B C P, \angle C P D=' \angle C P B=180-(90+30)=60^{\circ}$
4) In the figure $A B C D$ is a quadrilateral in which $A B$ is parallel to $C D$ and $A D=B C$

Prove that $A B C D$ is a cyclic quadrilateral.

Answers

\star The line $A B$ is parallel to $C D$. Therefore $\angle A+\angle D=180^{\circ}$
\star Since $A D=B C$ then $A B C D$ is an isosceles trapezium $\angle A=\angle B$
\star Therefore $\angle B+\angle D=180^{\circ} . A B C D$ is a cyclic quadrilateral .
5) The angles of the quadrilateral $A B C D$ are in the ratio $1: 2: 3: 4$ in an order.
a) If the smallest angle is x,what are the other angles?
b) Find the measure of all the angles of $A B C D$
c) Is $A B C D$ a cyclic quadrilateral.
d) How should the ratio numbers interchange to make this cyclic?

Answers

a) Angles are $x, 2 x, 3 x, 4 x$
b) $x+2 x+3 x+4 x=360,10 x=360, x=36$ angles are $36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$
$\angle A+\angle C=36+108 \neq 180$.This is not cyclic .
c) If the ratio is changed into1:2:4:3,opposite angle sum becomes 180°. This is a cyclic quadrialteral

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) An arc of a circle can make three type of angles. Angle on the arc, angle at the centre and angle in the complement
b) Angle formed by the arc in the complement is half the angle at the centre
c) Sum of the angle of an arc and its complement is 180°
d) Angles on an arc are equal

Worksheet19

1) $O A B C$ is a parallelogram. Three vertices are on a circle and one at the centre. P is a point on the circle

a) Draw $A P$ and $C P$, mark the angle $A P C=x$. What is $\angle A O C$
b) What is angle $A B C$?
c) Find x
d) Find the angles of the parallelogram
a) $\angle A O C=2 x$
b) $\angle A B C=2 x$ Opposite angles of a parallelogram are equal
c) $\angle A P C+\angle A B C=180^{\circ}, x+2 x=180,3 x=180, x=60$
d) Angles are $120^{\circ}, 60^{\circ}, 120^{\circ}, 60^{\circ}$
2) In the figure O is the centre of the circle, $\angle B A O=20^{\circ}, \angle B C O=10^{\circ}$

a) What is the measure of angle $A B C$?
b) What is the measure of angle $A O C$?
c) What is the measure of angle $A D C$?
d) Find the angles of triangle $A O C$
e) If the diametre of the circle is 10 cm then find the length of the chord $A B$

Answers

a) In triangle $O A B, O A=O B$. Angles opposite to the equal sides are equal.Similarly in the case of triangle $O B C$ also.
$\angle A B C=20+10=30^{\circ}$
b) $\angle A O C=2 \times 30=60^{\circ}$
c) $\angle A D C=180-30=150^{\circ}$
d) Triangle $A O C, O A=O C, \angle O A C=\angle O C A=\frac{180-60}{2}=60^{\circ} \triangle O A C$ is an equilateral triangle. Angles are 60° each.
e) $O A=A C=O C=5 \mathrm{~cm}$, radius 5 cm .
3) In the figure O is the centre of the circle.lf angle $A D C=140^{\circ}$, angle $A E C=60^{\circ}$ then

a) What is the measeure of $\angle A P C$ and $\angle A Q C$
b) What is the measure of angle $A O C$?
c) Fnd the angles of the quadrlateral $P E Q B$

Answers

a) $\angle A P C=180-140=40^{\circ}, \angle A Q C=40^{\circ}$
b) $\angle A O C=2 \times 40=80^{\circ}$
c) In the quadrilateral $\angle A E Q=\angle A E C=60^{\circ}, \angle E P B=180-40=140^{\circ}, \angle E Q B=$ 140°
$\angle P B Q=360-(140+140+60)=20$. Angles are $140^{\circ}, 60^{\circ}, 140^{\circ}, 20^{\circ}$
4) In the figure O is the centre of the circle, $\angle O A C=45^{\circ}$ then

a) What kind of triangle is $O A C$?
b) What is the measure of angle $A B C$?
c) What is the measure of angle $A D C$?
d) If the radius of the circle is 6 cm then what is the length of the chord $A C$.

Answers

a) $O A=O C, \angle O A C=\angle O C A=45^{\circ}, \angle A O C=90^{\circ} . \triangle O A C$ is an isosceles right triangle
b) $\angle A B C=\frac{1}{2} A O C=45^{\circ}$
c) $\angle A D C=180-45=135^{\circ}$
d) $A C=\sqrt{6^{2}+6^{2}}=6 \sqrt{2} \mathrm{~cm}$
5) Draw a circle of radius 3 cm , construct an equilateral triangle with vertices on the circle. What is the length of the side?

Answers

* Draw a circle with centre O and radius 3 cm . Mark a point A on the circle and radius $O A$.
\star Divide the angle around the centre 120° each and mark the points B, C on the circle
\star Draw triangle $A B C$.
\star Length of side $=3 \sqrt{3} \mathrm{~cm}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) If the vertices of a qudrilateral are on a circle we call it cyclic quadrilateral.
b) The sum of the opposite angles of a cyclic quadrilateral is 180°.
c) The converse of the above statement is also true. If the sum of the opposite angles of a quadrilateral is 180° it will be a cyclic quadrilateral.
d) Square, rectangle and isosceles trapezium are cyclic .

Worksheet22

1) In the figure $P Q R S$ is a cyclic quadrilateral. $\angle P=x, \angle Q=y, \angle R=3 x, \angle S=5 y$.

a) Find x and y
b) Find the angles of the quadrilateral.

Answers

a) $\angle P+\angle R=180^{\circ}$ $x+3 x=180,4 x=180, x=45$
$\angle Q+\angle S=180^{\circ}, y+5 y=180,6 y=180, y=30$
b) $\angle P=45^{\circ}, \angle R=3 \times 45=135^{\circ} \angle Q=30^{\circ}, \angle S=5 \times 30=150^{\circ}$
2) $A B C$ is an isosceles triangle with $A B=A C, \angle A B C=50^{\circ}$.

a) Name two cyclic quadrilaterals in this picture.
b) What is the measure of angle D ?
c) What is the measure of $\angle B E C$?
a) Quadrilateral $A B E C$ and quadrilateral $D B E C$ are cyclic.
b) $\angle A B C=\angle A C B=50^{\circ}$
$\therefore \angle A=180-100=80^{\circ}$
$\therefore \angle D=80^{\circ}$
c) $\angle B E C=180-80=100^{\circ}$
3) $A B C D$ is a cyclic quadrilateral. $A B$ is the diametre of the circle , $A D=C D$ and $\angle A D C=130^{\circ}$.

a) What is the measure of $\angle A C B$?
b) What is the measure of $\angle A B C$?
c) Find $\angle D C B$.
d) What is the measure of $\angle B A D$?
a) $\angle A C B=90^{\circ}$ (Angle in the semicircle)
b) $\angle A B C=180-130=50^{\circ}$
c) Since $C D=A D$,the angles opposite to the equal sides of triangle $A D C$ are equal. $\angle D C A=25^{\circ}, \angle D C B=90+25=115^{\circ}$
d) $\angle B A D=180-115=65^{\circ}$
4) Prove that any cyclic parallelogram is a rectangle.

Answers
$\star A B C D$ is a parallelogram .(Draw rough figure)

* Opposite angles are equal. $\angle A=\angle C, \angle B=\angle D$
\star Sum of the opposite angles is 180°
$\star \angle A+\angle C=180^{\circ}, \angle A=\angle C \therefore \angle A=90^{\circ}, \angle C=90^{\circ}$
$\star \angle B+\angle D=180^{\circ}, \angle B=\angle D \therefore \angle B=90^{\circ}, \angle D=90^{\circ}$
$\star A B C D$ is a square

5) In triangle $A B C, A B=A C \cdot P$ and Q are the mid points of the side $A B$ and $A C$.
a) Draw a rough diagram and join the points P and Q.
b) Prove that $B P Q C$ is a cyclic quadrilateral.
c) If $\angle A$ in triangle $A B C$ is 20°, find the angles of the trapezium $B P Q C$

Answers

a) Figure

b) Since $A B=A C, \angle B=\angle C$.

Line joining the mid points of two sides of a triangle is parallel to the third side. $P Q$ is parallel to $B C$.
In $P B C Q, \angle B+\angle P=180^{\circ}$ (co interior angles)
Since $\angle C=\angle B \angle C+\angle P=180^{\circ}$
$P Q C B$ is a cyclic quadrilateral
c) $\angle A=20^{\circ}$
$\angle B=\angle C=\frac{180-20}{2}=80^{\circ}$
$\angle B+\angle P=180^{\circ}, \angle P=100^{\circ}, \angle Q=100^{\circ}$
Angles are $\angle P=100^{\circ}, \angle Q=100^{\circ}, \angle B=80^{\circ}, \angle C=80^{\circ}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) If the vertices of a qudrilateral are on a circle we call it cyclic quadrilateral.
b) The sum of the opposite angles of a cyclic quadrilateral is 180°.
c) The converse of the above statement is also true. If the sum of the opposite angles of a quadrilateral is 180° it will be a cyclic quadrilateral.
d) Square, rectangle and isosceles trapezium are cyclic .

Worksheet23

1) C, D are two points in a semicircle of diametre $A B$.

If $\angle B A D=70^{\circ}, \angle D B C=30^{\circ}$ then

a) What is the measure of $\angle B C D$?
b) What is the measure of $\angle C D B$?
c) What is the measure of $\angle A D C$?
d) What is the measure of $\angle A B D$?

Answers

a) $\angle B C D=180-70=110^{\circ}$
b) $\angle C D B=180-(30+110)=180-140=40^{\circ}$
c) $\angle A D C=\angle A D B+\angle B D C=90+40=130^{\circ}$
d) $\angle A B D=180-(90+70)=180-160=20^{\circ}$
2) In the figure we can see three intersecting circles $D-P-Q-C$ are on a line $A-R-S-B$ are also on a line

a) Prove that the quadrilateral $A B C D$ is cyclic
b) If $\angle C D A=\angle D A B$ then what type of quadrilateral is $A B C D$?
c) If $\angle C D A=\angle D A B=40^{\circ}$ then find other two angles of $A B C D$

Answers

a) Join $P R$ and $Q S$ in the figure.
$D A R P$ is a cyclic quadrilateral.
If $\angle A D P=x$,then $\angle A R P=180-x, \angle P R S=x$.
Since PRSQ is cyclic, $\angle P Q S=180-x, \angle S Q C=x, \angle S B C=180-x$.
In the quadrilateral $A B C D, \angle D+\angle B=x+180-x=180^{\circ}$
$A B C D$ is cyclic.
b) Quadrilateral $A B C D$ will be an isosceles trapezium.
c) $\angle A B C=140^{\circ}, \angle D C B=140^{\circ}$

3 In traingle $A B C, P$ is a point on $B C$.
$A B=A P$, the line through A parallel to $B C$ and the line through C parallel to $A P$ intersect at D.Prove that $A B C D$ is cyclic

Answers

a) In traingle $A B P, A B=A P$. Angles opposite to the equal sides are equal. $\angle A B P=x$ then $\angle A P B=x, \angle A P C=180-x$.
Since $A P C D$ is a parallelogram $\angle D=180-x$.
$\angle B+\angle D=x+180-x=180^{\circ}$.
$A B C D$ is cyclic
4) The parallelogram which is not a rectangle is not cyclic. Justify this statement

Answers

$\star A B C D$ is a parallelogram(Draw a parallelogram and name it as $A B C D$ in an order. $\angle A=\angle C$
\star Since $A B C D$ is not a rectangle $\angle A \neq 90^{\circ}, \angle C \neq 90^{\circ}$

* $\angle A+\angle C \neq 180^{\circ}$.
$\therefore A B C D$ is not cyclic

5) A, B, C, D, P, Q, R, Sare the points on a circle Find $\angle P+\angle Q+\angle R+\angle S$

Answers

a) Draw $S C$ and $S D$.
$\angle S B P C$ is cyclic. $\angle 1+\angle P=180^{\circ}$
b) $S C Q D$ is cyclic. $\therefore \angle 2+\angle Q=180^{\circ}$
c) $S D R A$ is cyclic. $\therefore \angle 3+\angle R=180^{\circ}$.
d) Adding,
$\angle 1+\angle 2+\angle 3+\angle P+\angle Q+\angle R=3 \times 180$
$\angle S+\angle P+\angle Q+\angle R=540^{\circ}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) If the vertices of a qudrilateral are on a circle we call it cyclic quadrilateral.
b) The sum of the opposite angles of a cyclic quadrilateral is 180°.
c) The converse of the above statement is also true. If the sum of the opposite angles of a quadrilateral is 180° it will be a cyclic quadrilateral.
d) Square, rectangle and isosceles trapezium are cyclic .

Worksheet24

1) In the figure O is the centre of the circle, $\angle D A B=50^{\circ}$

a) Find x
b) Find y
c) If $B C=C D$ then what is the measure of $\angle A D C$?
d) If $B C=C D$ then what is the measure of $\angle A B C$?

Answers
a) $x=2 \times 50=100^{\circ}$
b) $A B C D$ is a cyclic quadrilateral $. y+50=180, y=180-50=130$
c) Draw $B D$.In traingle $B D C, C D=C B$

Angles opposite to the equal sides are equal .
$\angle C D B=\angle D B C=\frac{180-130}{2}=25^{\circ}$
In triangle $O D B, O D=O B$.Angles opposite to the equal sides are equal. $\angle O D B=$ $\angle O B D=\frac{180-100}{2}=40^{\circ}$
$\angle A D C=25+40=65^{\circ}$
d) $\angle A B D=90^{\circ}, \angle D B C=25^{\circ}$
$\angle A B C=90+25=115^{\circ}$
2) In the figure $\angle B A C=60^{\circ}, \angle B C A=20^{\circ}$

a) Looking into the figure Riswan said: $A C$ is the diametre of the circle .Can you agree with his opinion? Why?
b) What is the measure $\angle A D C$
c) If $\angle D A C: \angle D C A=3: 1$ then find these angles.

Answers

a) $\angle B=180-(60+20)=100^{\circ} \neq 90^{\circ}$
$A C$ is not the diametre
b) $A B C D$ is cyclic $. \angle A D C=180-100=80^{\circ}$
c) In triangle $A C D, \angle A+\angle C=180-80=100^{\circ}$. Divide 100 in the ratio $3: 1, \angle A=75^{\circ}, \angle C=25^{\circ}$

3 In the figure $A B C D E$ is a regular pentagon.Prove that $A B C E$ is a cyclic quadrilateral.

Answers
\star One angle of the regular pentagon is $=\frac{(5-2) \times 180}{5}=108^{\circ}$
\star In triangle $E D C, E D=C D, \angle D E C=\angle D C E=\frac{180-108}{2}=36^{\circ}$
$\star \angle E C B=108-36=72^{\circ}$. In the quadrilateral $A B C E, \angle A+\angle C=108+72=180^{\circ}$. $A B C E$ is cyclic.
4) Prove that the trapezium having diagonals equal is cyclic

Answers

* In the figure $A B C D$ is a trapezium having equal diagonals.$A B$ is parallel to $C D$,also $A C=B D$
$\star \operatorname{Draw} D P$ and, $C Q$ perpendicular to $A B$. We can see traingles $D P B$ and $C Q A$.These are right angled triangles.Hypotenues are equal . Other two sides are equal $(D P=C Q)$.These triangles are equal. $\angle C A Q=\angle D B P$
$\star \angle C A Q=\angle D B P$ are the angles of triangle $A C B$ and triangle $B D A$.
Consider triangle $A C B$, and triangle $B D A, A B$ is the common side , $A C=B D$, including angles are equal .These triangles are equal
\star Base angles of trapezium $A B C D$ are equal . This is an isosceles trapezium. Since $\angle A=$ $\angle B, \angle A+\angle D=180^{\circ}, \angle A+\angle C=180^{\circ} . A B C D$ is cyclic

5) $A B C D$ is a cyclic quadrilateral. If $\angle A-\angle C=60^{\circ}$ then find the measure of $\angle C$. What is the measure of $\angle A$?

Answers

* $\angle A-\angle C=60^{\circ}, \angle A+\angle C=180^{\circ}$.
\star Adding these equations $, 2 \times \angle A=240, \angle A=120^{\circ}, \angle C=180-120=60^{\circ}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) Two chords of a circle $A B$ and $C D$ intersect at the point P inside the circle .lt can be proved that $P A \times P B=P C \times P D$
b) This relation can be used to construct a rectangle having equal area of another rectangle.
c) If the chords intersect outside the circle ,the same relation holds. $P A \times P B=P C \times P D$

Worksheet 25

1) In the figure two chords $A B$ and $C D$ intersect inside a circle at P.

a) Join $A C$ and $B D$. Establish the similarity of triangle $P A C$ and $P B D$
b) What are the equal angles of these triangles
c) Prove that $P A \times P B=P C \times P D$

a) $\angle A C D=\angle A B D, \angle C A B=\angle C D B$ (Angle in the same arc are equal)
In the triangles $A C P$ and $D B P$
$\angle A C P=\angle D B P, \angle C A P=\angle P D B$
These triangles are similar.
b) $\angle C=\angle B, \angle A=\angle D$
c) Sides opposite to the equal angles are proportional. $\frac{P A}{P D}=\frac{P C}{P B}$ $P A \times P B=P C \times P D$
2) In the figure the chord $A B$ has length 8 cm and $O A=5 \mathrm{~cm}$.

a) What is the length of $O B$?
b) If $O C=2.5 \mathrm{~cm}$, what is the length of $O D$?

a) $O B=8-5=3 \mathrm{~cm}$
b) $O A \times O B=O C \times O D$
$5 \times 3=2.5 \times O D, O D=\frac{15}{2.5}=6 \mathrm{~cm}$
3) In the figure $A B=5 \mathrm{~cm}, B D=4 \mathrm{~cm}, C D=9 \mathrm{~cm}$.

a) What is the length of $A D$?
b) Calculate the length of $D E$?
c) Is $C E$ the diameter of the circle? why?
d) Find the length of $C E$

Answers
a) $A D=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}$
b) $D A \times D E=C D \times D B$
$3 \times D E=9 \times 4$
$D E=12 \mathrm{~cm}$
c) $C E$ is not the diametre. If it is a diametre , $\angle D=90^{\circ}$ has the vertex on the circle
d) $C E=\sqrt{12^{2}+9^{2}}=15 \mathrm{~cm}$
4) If $A B$ and $C D$ are two chords of a circle which when produced meet at a point P. If $P A=P C$ show that $A B=C D$.

Answers

$\star P A \times P B=P C \times P D$
Cancel $P A$ and $P C$ on both sides.
$P B=P D, P A-A B=P C-C D$
Again cancel $P A$ and $P C$ on both sides . $-A B=-C D$, $A B=C D$
5) In the figure $A B$ and $C D$ are two chords of a circle which when produced meet at a point P
a) Draw $A C$ and $B D$, complete the quadrilateral $A B D C$
b) Establish the similarity of the triangles $P A C$ and $P D B$
c) Establish the relation $P A \times P B=P C \times P D$

$\star A B D C$ is a cyclic quadrilateral If $\angle C=x, \angle B=180-x$ and $\angle P B D=x$. $\angle A C P=\angle D B P$
\star If $\angle A=y, \angle B D C=180-y$ and $\angle B D P=y$. $\angle C A P=\angle B D P$
\star Triangles $P C A$ and $P B D$ are similar.Sides opposite to the equal angles are proportional.

$$
\begin{aligned}
& \frac{P A}{P D}=\frac{P C}{P B} \\
& P A \times P B=P C \times P D
\end{aligned}
$$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) Two chords of a circle $A B$ and $C D$ intersect at the point P inside the circle .lt can be proved that $P A \times P B=P C \times P D$
b) This relation can be used to construct a rectangle having equal area of another rectangle.
c) If the chords intersect outside the circle ,the same relation holds. $P A \times P B=P C \times P D$

Worksheet 25

1) The chords $A B$ and $C D$ intersect at O. This point divide each chord into two segments

a) What is the relation between these segments?
b) If $C D=10 \mathrm{~cm}$ and $O D=4 \mathrm{~cm}$ then what is the length $O C$?
c) If $O A=8 \mathrm{~cm}, O C=6 \mathrm{~cm}$ and $O D=4 \mathrm{~cm}$ then what is the length $O B$?

Answers

a) $O A \times O B=O C \times O D$
b) $O C=C D-O D=10-4=6 \mathrm{~cm}$
c) $8 \times O B=6 \times 4, O B=3 \mathrm{~cm}$
2) The chords $A B$ and $C D$ intersect at P outside the circle.

a) What is the relation between $P A, P B, P C$ and $P D$?
b) If $A B=5 \mathrm{~cm}, P B=3 \mathrm{~cm}, P D=2 \mathrm{~cm}$ then what is the length $C D$?

Answers

a) $P A \times P B=P C \times P D$
b) $(5+3) \times 3=(P D+C D) \times P D$
$(5+3) \times 3=(2+C D) \times 2$
$2+C D=12, C D=10 \mathrm{~cm}$
3) In the trapezium $A B C D, A D=B C$ and $A B$ is parallel to $C D$. The diagonals $A C$ and $B D$ intersect at P.

a) What is the relation between $\angle A D B$ and $\angle A C B$? How can we realize this relation?
b) If $\angle D A C=30^{\circ}$ then what is the measure of $\angle D B C$?
c) What is the relation between the segments made by P on the diagonals?

Answers

a) $A B C D$ is an isosceles trapezium. Therefore it is a cyclic trapezium.

A circle passes through A, B, C, D.In this circle the arc $A B$ makes two angles $\angle A D B, \angle A C D$ in its complement. These are equal $\angle A D B=\angle A C D$
b) The arc $C D$ makes two angles $\angle D A C, \angle D B C$ in its complement. These are equal Since $\angle D A C=30^{\circ}, \angle D B C=30^{\circ}$
c) $A C @_{8} B D$ are the diagonals. These are the chords of the circle passing through the vertices
. These chods meet at P.
$P A \times P C=P B \times P D$
4) In the quadrlateral $A B C D$, the diagonals $A C$ and $B D$ intersect at P. If $P A=9 \mathrm{~cm}$ $P B=12 \mathrm{~cm}, P C=4 \mathrm{~cm}$ and $P D=3 \mathrm{~cm}$ then
a) Draw a rough diagram and mark the mesaurements
b) Is this a cyclic quadrilateral? How can we realize this?
c) If $\angle A=40^{\circ}$ and $\angle B=70^{\circ}$ find other two angles of the quadrilateral

Answers

a) Picture

b) $P A \times P C=9 \times 4=36$
$P B \times P D=12 \times 3=36$
$P A \times P C=P B \times P D$
There will a circle with the diagonals as the chords.$A B C D$ is a cyclic quadrilateral.
c) $\angle A=40^{\circ} \therefore \angle C=180-40=140^{\circ}$
$\angle B=70^{\circ} \therefore \angle D=180-70=110^{\circ}$
5) Draw a rectangle of sides 4 cm and 6 cm . Construct another rectangle with area equal to the area of the first rectangle and one side 7 cm in length.

Answers

* Draw a circle with the sides $A B=6 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$. Produce $A B$ to $E, 1$ more such that $A E=7$
\star Draw a arc with centre A and radius $A E$. This arc intresect $D A$ produced at F. Produce $B A$ such that $A D=A G$
* Draw circumcircle of triangle $B F G$. This circle intersect $A D$ at H.Draw a rectangle with sides $A E$ and $A H$.Area of this rectangle will be equal to the area of the rectangle $A B C D$. Note :The first rectangle have area $A G \times A B . A E \times A H$ is the area of second rectangle . These areas are equal because $A B \times A G=A F \times A H$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) In the case of the intersecting chords of a circle,if one chord $A B$ is the diametre of the circle and other chord $C D$ is perpendicular to the diametre ,then $P A \times P B=P C^{2}$
b) This relation is used to construct a square with same area of a rectangle.lt can be used to draw the lines of irrational lengths.

Worksheet 26

1) $A B$ is the diametre of a semicircle, P is a point on $A B$ and $P C$ is perpendicular to $A B$

a) Prove that $P A \times P B=P C^{2}$
b) If $P A=9 \mathrm{~cm}, P B=4 \mathrm{~cm}$ then what is the length $P C$?
c) What is the area of the square with side $P C$?

Answers

a) Draw $A C, B C$.Consider triangle $A P C$ and triangle $B P C$.If $\angle P A C=x$ then $\angle P C A=$ $90-x, \angle P C B=90-(90-x)=x, \angle P B C=90-x$
These are similar triangles. Sides opposite to the equal angles are proportional . $\frac{P C}{P B}=\frac{P A}{P C}$ $P A \times P B=P C^{2}$.
b) $P C^{2}=9 \times 4=36, P C=6 \mathrm{~cm}$
c) Area $P C^{2}=36 \mathrm{sq} . \mathrm{cm}$
2) $] A B$ is the diametre of a semicircle, P is a point on $A B$ and $P C$ is perpendicular to $A B$

a) If $P C=6 \mathrm{~cm}$, and $P B=3 \mathrm{~cm}$ then what is the length of $P A$
b) What is the radius of the circle ?
c) What is the area of the square drawn with side $P C$?

Answers
a) $P A \times P B=P C^{2}$
$P A \times 3=6^{2}, P A=12 \mathrm{~cm}$
b) $A B=12+3=15 \mathrm{~cm}$, Radius 7.5 cm .
c) Area $P C^{2}=36 \mathrm{sq} . \mathrm{cm}$
3) In the figure $A B$ is the diametre of the semicircle, $P C$ is perpendicular to $A B . A C=5 \sqrt{29} \mathrm{~cm}$ and $P A=25 \mathrm{~cm}$.

a) What is the length of $P C$?
b) What is the lenght $P B$?
c) What is the radius of the circle?

Answers

a) $P C=\sqrt{(5 \sqrt{29})^{2}-25^{2}}=10 \mathrm{~cm}$
b) $P A \times P B=P C^{2}, 25 \times P B=10^{2}, P C=4 \mathrm{~cm}$
c) $A B=25+4=29$, Radius $=14.5 \mathrm{~cm}$
4) Draw a semicircle of suitable diametre .Construct a line of length $\sqrt{12} \mathrm{~cm}$ perpendicular to the diametre whose one end is on the diameter and other end is on the semicircle.Explain the principle of construction.

Answers

a) Take two positive integers having the product 12 .Draw a circle with the sum of these numbers as the diametre.
$12=6 \times 2$, diametre $=6+2=8 \mathrm{~cm}$.
Draw a line $A B$ of lenght 8 cm , and a semicircle with $A B$ as the diametre.
b) Mark a point P at the diatance 6 cm from A. Draw a perpendicular to $A B$ at P.This line cut the semicircle at C
c) $P C^{2}=P A \times P B=6 \times 2=12$

5) In the figure $A B$ is the diametre of the circle and $P C$ is perpendicular to the diametre. $P A: P B=2: 1$ and $P C=6 \mathrm{~cm}$.

a) Write the relation between $P A, P B$ and $P C$?
b) Find the lengths $P A$ and $P B$
c) What is the radius of the circle?

Answers

a) $P A \times P B=P C^{2}$
b) If $P B=x, 2 x \times x=6^{2}, 2 x^{2}=36, x^{2}=18, x=\sqrt{18}=\sqrt{9 \times 2}=3 \sqrt{2}$
$P A=6 \sqrt{2}, P B=3 \sqrt{2}$
c) $A B=6 \sqrt{2}+3 \sqrt{2}=9 \sqrt{2}$

Radius $=\frac{9 \sqrt{2}}{2} \mathrm{~cm}$

2020-21 Academic year Works

Mathematics X

Circles

Concepts

a) In the case of the intersecting chords of a circle,if one chord $A B$ is the diametre of the circle and other chord $C D$ is perpendicular to the diametre ,then $P A \times P B=P C^{2}$
b) This relation is used to construct a square with same area of a rectangle.lt can be used to draw the lines of irrational lengths.

Worksheet 26

1) $A B$ is the diametre of a semicircle.The lines $P Q$ and $R S$ are perpendicular to $A B$.If $P Q=R S$ then

a) What is the relation between the lengths $P A, P B$ and $P Q$?
b) What is the relation between the lenghths $A R, B R$ and $R S$
c) Prove that $P A=B R$
a) $P A \times P B=P Q^{2}$
b) $A R \times B R=R S^{2}$
c) Since $R S=P Q, R S^{2}=P Q^{2}$
$P A \times P B=A R \times B R$
$P A(P R+B R)=B R(P A+P R)$
$P A \times P R+P A \times B R=P A \times B R+B R \times P R$
Cancel $P A \times B R$ from both sides
$P A \times P R=P R \times B R$
$P A=B R$
2) a) Draw an equilateral triangle of altitude 3 cm
b) What is the lenght of one side ?
c) What is the radius of its incircle?

Answers
a) Draw a line $A D$ of length 4 cm . Draw a circle with diametre $A D$. Mark a point P at a distance 3 cm from A. From P draw a line perpendicular to $A D$. This line cut the circle at C, B.Draw triangle $A B C$.
$P C^{2}=3 \times 1, P C=\sqrt{3}, B C=2 \sqrt{3} \mathrm{~cm}$
$A C=\sqrt{3^{2}+\sqrt{3}^{2}}=\sqrt{12}=2 \sqrt{3} \mathrm{~cm}$.
$A B=2 \sqrt{3} \mathrm{~cm} . A B=B C=A C=2 \sqrt{3} \mathrm{~cm}$
b) $A B=A C=B C=2 \sqrt{3}$
3) Draw a rectangle of sides 5 cm and 3 cm . Construct a square whose area is same as the area of the rectangle

Answers

* Draw the quadrilateral $A B C D . A B=5 \mathrm{~cm}, B C=3 \mathrm{~cm}$.
\star Produce $A B$ and mark the point E such that $B C=B E$
\star Draw a semicircle of diametre $A E$. Produce $B C$, meet the semixircle at F.
$\star B A \times B E=B F^{2}$ can be written as $A B \times B C=B F^{2} . A B \times B C$ is the area of the rectangle
* Draw a square of side $B F$. Area of rectangle is equal to the area of the square as per the relation $A B \times B C=B F^{2}$

4)

a) Draw a semicircle of suitable diametre .Draw a line of length $\sqrt{12} \mathrm{~cm}$ whose one end on $A B$ and other end on the semicircle.
b) Draw a chord of length $\sqrt{48} \mathrm{~cm}$ by make the semicircle as the circle

Answers

\star Take two numbers with product 12 , draw a circle with diameter as the sum of these numbers $.12=6 \times 2$, diametre $=6+2=8 \mathrm{~cm}$.
Draw a line of $A B=8 \mathrm{~cm}$. Draw a circle with this line as the diametre
Mark a point P at the diatance 6 cm from A, draw a perpendicular line from P to the diametre . This line cut the semicircle at C.
$P C^{2}=P A \times P B=6 \times 2=12$
$P C=\sqrt{12} \mathrm{~cm}$

* Make semicircle as the circle . Produce $C P$ in such a way as the meet the circle at D. $C D=2 \sqrt{12}=\sqrt{2^{2} \times 12}=\sqrt{48} \mathrm{~cm}$

5) $A B$ is the diametre of a semicircle. $P Q=\sqrt{14} \mathrm{~cm} R S=\sqrt{18} \mathrm{~cm}$. These lines are perpendicular to the diametre. Find the length of $A B$?

Answers

* $P Q=\sqrt{14}=\sqrt{7 \times 2}$

Length of $A P$ is 2 cm . length of $B P \mathrm{~cm} 7$.
Then $A B=9 \mathrm{~cm}$.
$\star R S=\sqrt{18}=\sqrt{6 \times 3}$
Length of $A R \mathrm{is} 6 \mathrm{~cm}$,length of $B R$ is 3 cm .
Then $A B=9 \mathrm{~cm}$.
\star In both cases $A B=6+3=9$ and $A B=2+7=9 . A B=9 \mathrm{~cm}$
6) $A B$ is the diametre of a semicircle , $P Q$ is parallel to the diametre If $A B=8 \mathrm{~cm}, B Q=2 \mathrm{~cm}$ then find the langth $P Q$.

Answers

\star Draw a perpendicular from Q to $A B$. Draw $Q C$, If $C B=x$ then $C A=8-x$
$\star C B \times C A=C Q^{2}$
$x(8-x)=C Q^{2}$
\star In the right triangle $Q C B, C Q^{2}=2^{2}-x^{2}=4-x^{2}$
$\star x(8-x)=4-x^{2}, 8 x-x^{2}=4-x^{2}, 8 x=4, x=\frac{4}{8}=\frac{1}{2}$

* Draw a perpendicular from P to $A B$,

$P Q=8-\left(\frac{1}{2}+\frac{1}{2}\right)=7 \mathrm{~cm}$

7) Draw an equilateral triangle of one side $\sqrt{18} \mathrm{~cm}$
$18=6 \times 3,6+3=9$
Draw a line $A B$ of length 9 cm
\star Draw a semicircle with diameter $A B$. Mark a point P at the diatance 6 cm from A. Draw a perpendicular from P to $A B$. This line cut the circle at $C . P C=\sqrt{18}$.
\star Draw an equilateral triangle with $P C$ as side
