- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
- Trigonometry is the science of relationships between the sides and angles of a rightangled triangle.
- <u>Trigonometric Ratios</u>: Ratios of sides of right triangle are called trigonometric ratios. Consider triangle ABC right-angled at B. These ratios are always defined with respect to acute angle 'A' or angle 'C.
- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
- How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the 'θ' being considered.

Let us look at both cases:

In a right triangle ABC, right-angled at B. Once we have identified the sides, we can define six t-Ratios with respect to the sides.

case I	case II	
(i) sine $A = perpendicularhypotenuse=BCAC$	(i) sine $C = perpendicularhypotenuse=ABAC$	
(ii) cosine A = basehypotenuse=ABAC	(ii) cosine C = basehypotenuse=BCAC	
(iii) tangent A = perpendicularbase=BCAB	(iii) tangent C = perpendicularbase=ABBC	
(iv) cosecant $A = hypotenuseperpendicular=ACBC$	(iv) cosecant $C = hypotenuseperpendicular=ACAB$	
(v) secant $A = hypotenusebase=ACAB$	(v) secant $C = hypotenusebase=ACBC$	
(v) cotangent $A = baseperpendicular=ABBC$	(v) cotangent $C = baseperpendicular=BCAB$	

Note from above six relationships:

cosecant A = 1sinA, secant A = 1cosineA, cotangent A = 1tanA,

However, it is very tedious to write full forms of t-ratios, therefore the abbreviated notations are: sine A is sin A cosine A is cos A tangent A is tan A cosecant A is cosec A secant A is sec A cotangent A is cot A

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:

 $\tan \theta = \sin\theta \cos\theta$ $\cot \theta = \cos\theta \sin\theta$

- $\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow \sin^2 \theta = 1 \cos^2 \theta \Rightarrow \cos^2 \theta = 1 \sin^2 \theta$
- $\csc^2 \theta \cot^2 \theta = 1 \Rightarrow \csc^2 \theta = 1 + \cot^2 \theta \Rightarrow \cot^2 \theta = \csc^2 \theta 1$
- $\sec^2 \theta \tan^2 \theta = 1 \Rightarrow \sec^2 \theta = 1 + \tan^2 \theta \Rightarrow \tan^2 \theta = \sec^2 \theta 1$
- $\sin \theta \csc \theta = 1 \Rightarrow \cos \theta \sec \theta = 1 \Rightarrow \tan \theta \cot \theta = 1$

ALERT:

A t-ratio only depends upon the angle ' θ ' and stays the same for same angle of different sized right triangles.

Value of t-ratios of specified angles:

۷A	0 °	30 °	45 °	60 °	90 °
sin A	0	12	12√	3√2	1
cos A	1	3√2	12√	12	0
tan A	0	13√	1	$\sqrt{3}$	not defined
cosec A	not defined	2	$\sqrt{2}$	23√	1
sec A	1	23√	$\sqrt{2}$	2	not defined
cot A	not defined	$\sqrt{3}$	1	13√	0

The value of sin θ and cos θ can never exceed 1 (one) as opposite side is 1. Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled Δ .

't-RATIOS' OF COMPLEMENTARY ANGLES

If $\triangle ABC$ is a right-angled triangle, right-angled at B, then $\angle A + \angle C = 90^{\circ} [\because \angle A + \angle B + \angle C = 180^{\circ} \text{ angle-sum-property}]$ or $\angle C = (90^{\circ} - \angle A)$

Thus, $\angle A$ and $\angle C$ are known as complementary angles and are related by the following relationships:

 $\sin (90^{\circ} - A) = \cos A$; $\csc (90^{\circ} - A) = \sec A$ $\cos (90^{\circ} - A) = \sin A$; $\sec (90^{\circ} - A) = \csc A$ $\tan (90^{\circ} - A) = \cot A$; $\cot (90^{\circ} - A) = \tan A$