- Position of a point P in the Cartesian plane with respect to co-ordinate axes is represented by the ordered pair (x, y).
- Trigonometry is the science of relationships between the sides and angles of a rightangled triangle.
- Trigonometric Ratios: Ratios of sides of right triangle are called trigonometric ratios. Consider triangle ABC right-angled at B . These ratios are always defined with respect to acute angle ' A ' or angle ' C .
- If one of the trigonometric ratios of an acute angle is known, the remaining trigonometric ratios of an angle can be easily determined.
- How to identify sides: Identify the angle with respect to which the t-ratios have to be calculated. Sides are always labelled with respect to the ' θ ' being considered.

Let us look at both cases:

Case I: $\angle \mathrm{A}=\boldsymbol{\theta}$

Case II: $\angle \mathrm{C}=\boldsymbol{\theta}$

In a right triangle ABC , right-angled at B . Once we have identified the sides, we can define six t Ratios with respect to the sides.

case \mathbf{I}	case II
(i) sine $\mathrm{A}=$ perpendicularhypotenuse $=B C A C$	(i) sine $\mathrm{C}=$ perpendicularhypotenuse $=A B A C$
(ii) cosine $\mathrm{A}=$ basehypotenuse $=A B A C$	(ii) cosine $\mathrm{C}=$ basehypotenuse $=B C A C$
(iii) tangent $\mathrm{A}=$ perpendicularbase $=B C A B$	(iii) tangent $\mathrm{C}=$ perpendicularbase $=A B B C$
(iv) cosecant $\mathrm{A}=$ hypotenuseperpendicular $=A C B C$	(iv) cosecant $\mathrm{C}=$ hypotenuseperpendicular $=A C A B$
(v) secant $\mathrm{A}=$ hypotenusebase $=A C A B$	(v) secant $\mathrm{C}=$ hypotenusebase $=A C B C$
(v) cotangent $\mathrm{A}=$ baseperpendicular $=A B B C$	(v) cotangent $\mathrm{C}=$ baseperpendicular $=B C A B$

Note from above six relationships:
$\operatorname{cosec} a n t \mathrm{~A}=1 \sin A$, secant $\mathrm{A}=1 \operatorname{cosine} A$, cotangent $\mathrm{A}=1 \tan A$,
However, it is very tedious to write full forms of t-ratios, therefore the abbreviated notations are: sine A is $\sin A$ cosine A is $\cos \mathrm{A}$ tangent A is $\tan \mathrm{A}$
cosecant A is cosec A
secant A is sec A
cotangent A is $\cot \mathrm{A}$

TRIGONOMETRIC IDENTITIES

An equation involving trigonometric ratio of angle(s) is called a trigonometric identity, if it is true for all values of the angles involved. These are:
$\tan \theta=\sin \theta \cos \theta$
$\cot \theta=\cos \theta \sin \theta$

- $\sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta \Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta$
- $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \Rightarrow \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta \Rightarrow \cot ^{2} \theta=\operatorname{cosec}^{2} \theta-1$
- $\sec ^{2} \theta-\tan ^{2} \theta=1 \Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1$
- $\sin \theta \operatorname{cosec} \theta=1 \Rightarrow \cos \theta \sec \theta=1 \Rightarrow \tan \theta \cot \theta=1$

ALERT:

A t-ratio only depends upon the angle ' θ ' and stays the same for same angle of different sized right triangles.

Value of \mathbf{t}-ratios of specified angles:

$\angle \mathbf{A}$	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\sin A$	0	12	$12 \sqrt{ }$	$3 \sqrt{2}$	1
$\cos A$	1	$3 \sqrt{2}$	$12 \sqrt{ }$	12	0
$\tan A$	0	$13 \sqrt{ }$	1	$\sqrt{3}$	not defined
$\operatorname{cosec} A$	not defined	2	$\sqrt{2}$	$23 \sqrt{ }$	1
$\sec A$	1	$23 \sqrt{ }$	$\sqrt{2}$	2	not defined
$\cot A$	not defined	$\sqrt{ } 3$	1	$13 \sqrt{ }$	0

The value of $\sin \theta$ and $\cos \theta$ can never exceed 1 (one) as opposite side is 1 . Adjacent side can never be greater than hypotenuse since hypotenuse is the longest side in a right-angled Δ.

't-RATIOS' OF COMPLEMENTARY ANGLES

If $\triangle A B C$ is a right-angled triangle, right-angled at B, then $\angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}\left[\because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}\right.$ angle-sum-property $]$ or $\angle \mathrm{C}=\left(90^{\circ}-\angle \mathrm{A}\right)$

Thus, $\angle \mathrm{A}$ and $\angle \mathrm{C}$ are known as complementary angles and are related by the following relationships:
$\sin \left(90^{\circ}-\mathrm{A}\right)=\cos \mathrm{A} ; \operatorname{cosec}\left(90^{\circ}-\mathrm{A}\right)=\sec \mathrm{A}$
$\cos \left(90^{\circ}-A\right)=\sin A ; \sec \left(90^{\circ}-A\right)=\operatorname{cosec} A$
$\tan \left(90^{\circ}-\mathrm{A}\right)=\cot \mathrm{A} ; \cot \left(90^{\circ}-\mathrm{A}\right)=\tan \mathrm{A}$

