UNIT 4 Reflection of Light

15/12/2020 – Class 37

<u>Assignment Answer</u>

1. An object is placed in front of a concave mirror 40 cm away from it. If its focal length is 80 cm, locate position of the image and find the nature of the image?

Object distance (u) = - 40 cm Focal length (f) = - 80 cm Image distance (v) = uf / (u-f) v = (-40 X - 80) / (-40 - - 80)= + 3200 / +40 = + 80 cm

Since v is positive, the image is virtual and erect.

Activity 1

Is there any relationship between the position of image and the size of the image? **Discussion**

• What you mean by magnification? It is the ratio of height of the image to the height of the object.

Magnification

Magnification is the ratio of height of the image to the height of the object **Magnification (m) = Height of the image / Height of the object = hi / ho**

Activity 2

Does magnification has any relation with the value of v/u?

Ray diagram showing the image formation of a concave mirror is given?

Discussion

- Where is the position of the object (OB)? **Beyond C**
- Where is the position of the image (IM)? **Between F and C**
- What is the peculiarity of the triangles OBP and IMP? **They are similar triangles.**
- Write down the ratio of corresponding sides of the similar triangles? **IM** / **OB** = **IP** / **OP**

In the figure,

IM = Height of image (hi)
OB = Height of the object (ho)
IP = Image distance (v)
OP = Object distance (u)

JOJI GEORGE , HST, ST JOHNS SYRIAN HSS VADAKARA

Substituting the above values, we get hi / ho = v / uAccording to New Cartesian Sign convention, hi = **negative** ho = **positive** v = **negative** u = **negative** Apply the New Cartesian Sign convention in the above equation, -hi / ho = -v / -u-hi/ho = v/u

But magnification m = hi / ho,

-m = v / um = -(v / u)

Inference Magnification (m) = hi / ho = -(v / u)

Activity 3

When an object of height 6 cm is placed in front of a concave mirror at a distance 10 cm away from it, an image is obtained 16 cm away, on the same side. Find out the height of image and magnification?

> Height of object (ho) = + 6 cm Object distance (u) = -10 cm Image distance (v) = **-16 cm**

```
Magnification (m) = -(v / u)
              m = -(-16/-10)
              m = - 1.6
              Magnification (m) = -1.6 (since magnification is a ratio, it has no unit)
```

Magnification (m) = hi / ho-1.6 = hi / +6hi = - 1.6 X 6 = -9.6 cm Height of image (hi) = - 9.6 cm

Height of the image is negative. So image is real and inverted.

Assignment

An object is placed 8 cm away in front of a concave mirror of focal length 5 cm. Find the position of image and magnification?