www.gateforum.com

Q. No. 1 – 25 Carry One Mark Each

- 1. The bridge method commonly used for finding mutual inductance is (A) Heaviside Campbell bridge (B) Schering bridge (C) De Sauty bridge (D) Wien bridge Answer:- (A) A two phase load draws the following phase currents: $i_1(t) = I_m \sin(\omega t - \phi_1)$, 2. $i_2(t) = I_m \cos(\omega t - \phi_1)$. These currents are balanced if ϕ_1 is equal to (A) $-\phi_2$ (B) ϕ_2 (C) $(\pi/2 - \phi_2)$ (D) $(\pi/2 + \phi_2)$ Answer:- (D) Exp:- I(t) = I_m sin $(\omega t - \sigma_1) = I_m \cos \left[90 - (\omega t - r_1)\right] = I_m \cos \left(\omega t - \phi_1 - 90^{\circ}\right)$ $i_{x}(t) = I_{m} \cos(\omega t - \phi_{2})$ Angle difference between two currents should be -180° (or) 180° for balanced $-\phi_1 + \phi_2 - 90 = -180^{\circ} \Rightarrow \phi_1 = 90 + \phi_2$ The slip of an induction motor normally does not depend on 3. (A) Rotor speed (B) Synchronous speed (D) Core-loss component (C) Shaft torque Answer:- (D) Exp:- slip = $\frac{N_s - N_r}{N_c}$ \rightarrow So depends on N_s(synchronous speed) \rightarrow So depends on N_r(rotor speed) \rightarrow If torque increases N_r decreases \rightarrow It will not dependent on core loss
- A periodic voltage waveform observed on an oscilloscope across a load is shown. A permanent magnet moving coil (PMMC) meter connected across the same load reads

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Answer:- (A)

Exp:- PMMC will read average value

$$V_{avg} = \frac{\text{Area under curve}}{\text{Time period}}$$
$$= \frac{\left[\left[\frac{1}{2} \times 10 \times 10\right] - \left[5 \times 2\right] + \left[8 \times 5\right]\right] \times 10^{-3}}{20 \times 10^{-3}} = 4V$$

5. The bus admittance matrix of a three-bus three-line system is

$$Y = j \begin{bmatrix} -13 & 10 & 5\\ 10 & -18 & 10\\ 5 & 10 & -13 \end{bmatrix}$$

If each transmission line between the two buses is represented by an equivalent π -network, the magnitude of the shunt susceptance of the line connecting bus 1 and 2 is

(A) 4 (B) 2 (C) 1 (D) 0
Answer:- (B)
Exp:-
$$y_{11} = \frac{y_{\sin 12}}{2} + y_{12} + y_{13} + \frac{y_{ns}}{2} \Rightarrow \frac{y_{\sin 12}}{2} + \frac{y_{\sin 13}}{2} = 2$$

 $\Rightarrow \frac{y_{\sin 23}}{2} + \frac{y_{\sin 12}}{2} = 2$
 $\Rightarrow \frac{y_{\sin 13}}{2} + \frac{y_{\sin 23}}{2} = 2$
 $P_D = P_1 + P_2 - P_L \Rightarrow (40 = 20 + P_2 - 2) \Rightarrow P_2 = 22 MW$
 $P_1 = 20 ; r_2 = 22$

- 6. If $x[n] = (1/3)^{|n|} (1/2)^n u[n]$, then the region of convergence (ROC) of its Z-transform in the Z-plane will be
 - (A) $\frac{1}{3} < |z| < 3$ (B) $\frac{1}{3} < |z| < \frac{1}{2}$ (C) $\frac{1}{2} < |z| < 3$ (D) $\frac{1}{3} < |z|$

Answer:- (C)

Exp:-
$$x(n) = \left(\frac{1}{3}\right)^{|n|} - \left(\frac{1}{2}\right)^{n} + u(n) = \left(\frac{1}{3}\right)^{n} u(n) + \left(\frac{1}{3}\right)^{-n} u(-n) - \left(\frac{1}{2}\right)^{n} u(n)$$

 $x(n) = \left(\frac{1}{3}\right)^{n} u(n) + (3)^{n} u(-n) - \left(\frac{1}{2}\right)^{n} u(n)$
ROC: $|z| > \frac{1}{3}$ $|z| < 3$ $|z| > \frac{1}{2}$
common ROC: $\frac{1}{2} < |z| < 3$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

7. In the sum of products function $f(X, Y, Z) = \sum (2, 3, 4, 5)$, the prime implicants are

- (A) $\overline{X}Y, X\overline{Y}$ (B) $\overline{X}Y, X\overline{Y}\overline{Z}, X\overline{Y}Z$
- (C) $\overline{X}Y\overline{Z}, \overline{X}YZ, X\overline{Y}$
- (D) $\overline{X}Y\overline{Z}$, $\overline{X}YZ$, $X\overline{Y}\overline{Z}$, $X\overline{Y}Z$

Answer:- (A)

Exp:-

8. A system with transfer function $G(s) = \frac{(s^2 + 9)(s + 2)}{(s + 1)(s + 3)(s + 4)}$ is excited by $sin(\omega t)$.

= 9; ω = 3rad/s

- The steady-state output of the system is zero at (A) $\omega = 1 \text{ rad / s}$ (B) $\omega = 2 \text{ rad / s}$
- (C) $\omega = 3 \text{ rad} / \text{s}$ (D) $\omega = 4 \text{ rad} / \text{s}$

Answer:- (C)

Exp:-
$$|G(s)| = \frac{(9-\omega^2)\sqrt{4+\omega^2}}{\sqrt{\omega^2+1}\sqrt{\omega^2+9}\sqrt{16+\omega^2}} = 0; \omega^2$$

9. The impedance looking into nodes 1 and 2 in the given circuit is

(A) 50Ω

(B) 100Ω

(C) 5kΩ

(D) 10.1kΩ

© All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GATEFORUM Engineering Success

 $\begin{array}{l} \mbox{After connecting a voltage source of V} \\ R_{th} = \frac{V}{I} = \frac{50I}{I} = 50\Omega \\ V_1 = V_2 \Rightarrow (10k)(-i_b) = 100(I+99i_b+i_b); \\ -10000i_b = 100I+100 \times 100i_b = 100I+10000i_b \\ -20000i_b = 100I \Rightarrow i_b = -\left(\frac{100}{20000}\right)\dot{I} = \left[-\frac{I}{200}\right] \\ V = 100\left[I+99i_b+i_b\right] = 100\left[I+100\left(\frac{-I}{200}\right)\right] = 50I \end{array}$

10. In the circuit shown below, the current through the inductor is

$$\mathbf{I}_{L} = 1 | \underline{\mathbf{0}} \times \frac{1}{1+j1} = \frac{1}{1+j1} \mathbf{A}$$

11. Given $f(z) = \frac{1}{z+1} - \frac{2}{z+3}$. If C is a counterclockwise path in the z-plane such that |z+1| = 1, the value of $\frac{1}{2\pi j} \oint_C f(z) dz$ is (A) -2 (B) -1 (C) 1 (D) 2 Answer:- (C)

© All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 4

Exp:-
$$\frac{1}{2\pi i} \oint_{C} f(z) dz = \frac{1}{2\pi i} \left[\oint_{C} \frac{1}{z+1} dz - \oint_{C} \frac{z}{z+3} dz \right]$$
$$z = -1 \text{ is singularity in } c \text{ and } z = -3 \text{ is not in } c$$
By cauchy's integral formula $I_2 = \oint_{C} \frac{z}{z+3} dz = 0$
$$\therefore I_1 = \oint_{C} \frac{1}{z+1} dz = 1; I_1 - I_2 = 1$$

12. Two independent random variables X and Y are uniformly distributed in the interval [-1, 1]. The probability that max[X, Y] is less than 1/2 is

Exp:- Uniform distribution X, Y on
$$[-1,1]$$
; $f(x) = f(y) = \frac{1}{2}$

$$P\left(\max(x,y) \le \frac{1}{2}\right) = P\left(X = \frac{1}{2}, -1 \le Y \le \frac{1}{2}\right) \cdot P\left(-1 \le X \le \frac{1}{2}, Y = \frac{1}{2}\right)$$
$$= \int_{-1}^{1/2} \frac{1}{2} dx \int_{-1}^{1/2} \frac{1}{2} dy = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$$

13. For the circuit shown in the figure, the voltage and current expressions are $v(t) = E_1 \sin(\omega t) + E_3 \sin(3\omega t)$ and $i(t) = I_1 \sin(\omega t - \phi_1) + I_3 \sin(3\omega t - \phi_3) + I_5 \sin(5\omega t)$.

The average power measured by the Wattmeter is

Answer:- (C)

Exp:- \Rightarrow in v(t) only fundamental, 3rd harmonics are present. 5th harmonics is zero $P = \frac{1}{2} \left[E_1 \mathbf{1}_1 \cos \phi_1 + E_3 \mathbf{I}_3 \cos \phi_3 \right]$

14. If
$$x = \sqrt{-1}$$
, then the value of x^{x} is
(A) $e^{-\pi/2}$ (B) $e^{\pi/2}$ (C) x (D) 1
Answer:- (A)
Exp:- Given, $x = \sqrt{-1}$; $x^{x} = (\sqrt{-1})^{\sqrt{-1}} = i^{1}$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 5

We know that
$$e^{i\theta} = \cos \theta + i \sin \theta \Rightarrow e^{i\frac{\pi}{2}} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = i$$

$$\therefore \quad (i)^{i} = (e^{i\pi/2})^{i} = e^{-\pi/2}$$

15. The typical ratio of latching current to holding current in a 20A thyristor is (A) 5.0 (B) 2.0 (C) 1.0 (D) 0.5 Answer:- (B)

16. A half-controlled single-phase bridge rectifier is supplying an R-L load. It is operated at a firing angle α and the load current is continuous. The fraction of cycle that the freewheeling diode conducts is

(A)
$$\frac{1}{2}$$
 (B) $\left(1-\frac{\alpha}{\pi}\right)$ (C) $\frac{\alpha}{2\pi}$ (D) $\frac{\alpha}{\pi}$

Answer:- (D)

17. The sequence components of the fault current are as follows: $I_{\text{positive}} = j1.5 \text{pu}, I_{\text{negative}} = -j0.5 \text{pu}, I_{\text{zero}} = -j1 \text{pu}$. The type of fault in the system is

The fuel cost of generators G_1 and G_2 are:

 $C_1(P_{G1}) = 10,000 \text{ Rs}$ / MWh and $C_2(P_{G2}) = 12500 \text{ Rs}$ / MWh and the loss in the line is $P_{loss(pu)} = 0.5 P_{G1(pu)}^2$, where the loss coefficient is specified in pu on a 100 MVA base. The most economic power generation schedule in MW is

- (A) $P_{G1} = 20, P_{G2} = 22$ (B) $P_{G1} = 22, P_{G2} = 20$
- (C) $P_{G1} = 20, P_{G2} = 20$ (D) $P_{G1} = 0, P_{G2} = 40$

Answer:- (A)

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 6

Exp:-
$$\lambda_1 = \lambda_2$$

 $\lambda_1 = 10,000$; $\lambda_2 = 12500$
 $4 = \frac{1}{1 - \frac{\partial P_L}{\partial P}} \Rightarrow \frac{1}{1 - P_1} \Rightarrow \frac{10,000}{1 - P_1} = 12500$
 $1 - \frac{10,000}{12500} = P_1 \Rightarrow \frac{2500}{12500} = \left[\frac{1}{5}\right] p.u$
 $P_L = \frac{1}{5} \times 100 = 20 MW$
 $P_L = 0.5 \left[\frac{1}{5}\right]^2 = \frac{0.5}{25} p.u = \frac{0.5}{25} \times 100 = 2 MW$
 $P_D = P_1 + P_D - P_L \Rightarrow 40 = 20 + P_D - 2 \Rightarrow P_D = 22 MW$

19. Consider the given circuit

© All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 7

Thus race around does not occur in the circuit

- 20. The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B. The number of combinations for which the output is logic 1, is
 - (A) 4 (B) 6
 - (C) 8 (D) 10

Answer:- (B)

$$\mathsf{Exp:} - \frac{\mathsf{A} = \mathsf{A}_1 \mathsf{A}_0}{\mathsf{B} = \mathsf{B}_1 \mathsf{B}_0} \Big\} \mathsf{A>B} \text{ if } \mathsf{A}_1 \mathsf{B}_1 + [\mathsf{A}_1 \odot \mathsf{B}_1][\mathsf{A}_0 \mathsf{B}_0 ']$$

21. The i-v characteristics of the diode in the circuit given below are

 $i = \begin{cases} \frac{v - 0.7}{500} A, v \ge 0.7V \\ 0A, v < 0.7V \end{cases}$

The current in the circuit is

- (A) 10 mA
- (B) 9.3 mA
- (C) 6.67 mA
- (D) 6.2 mA

Answer:- (D)

Exp:-
$$10 = (1000)i + v = \frac{1000(v - 0.7)}{500} + v = 2(v - 0.7) + v$$

= $2v - 1.4 + 2v = 3v - 1.4$; $2v = 2.4 \Rightarrow v = 0.8V$
 $i = \frac{V - 0.7}{500} = 6.2mA$

1kΩ

10V

- 22. In the following figure, C_1 and C_2 are ideal capacitors. C_1 has been charged to 12 V before the ideal switch S is closed at t = 0. The current i(t) for all t is
 - (A) Zero
 - (B) A step function
 - (C) An exponentially decaying function

(D) An impulse function

Answer:- (D)

Exp:- Time constant = RC

 $C_1 \qquad C_2 \qquad C_2$

In the given circuit, R=0 \therefore Rise time = 0; hence capacitor charges instantaneously and the current can be represented as impulse function

23. The average power delivered to an impedance $(4 - j3)\Omega$ by a current $5\cos(100\pi t + 100)A$ is (A) 44.2 W (B) 50 W (C) 62.5 W (D) 125 W

Answer:- (B)

Exp:- $Z = 4 - j3 = R_L - JX_C$; $R_L = 4$; $I = 5\cos(100\pi t + 100) = I_m \cos(\omega t + \alpha)$ $P = \frac{1}{2}I_m^2R_L = \frac{1}{2} \times 5^2 \times 4 = 50W$

24. The unilateral Lapalce transform of f(t) is $\frac{1}{s^2 + s + 1}$. The unilateral Lapalce transform of t f(t) is

(A)
$$-\frac{s}{(s^2+s+1)^2}$$
 (B) $-\frac{2s+1}{(s^2+s+1)^2}$ (C) $\frac{s}{(s^2+s+1)^2}$ (D) $\frac{2s+1}{(s^2+s+1)^2}$

Answer:- (D)

Exp:-
$$L[f(t)] = F(s) = \frac{1}{s^2 + s + 1}; L[tf(t)] = (-1)\frac{dF(s)}{ds} = (-1)\left[\frac{-(2s+1)}{s^2 + s + 1}\right] = \frac{2s+1}{s^2 + s + 1}$$

25. With initial condition x(1) = 0.5, the solution of the differential equation $t \frac{dx}{dt} + x = t$ is (A) $x = t - \frac{1}{2}$ (B) $x = t^2 - \frac{1}{2}$ (C) $x = \frac{t^2}{2}$ (D) $x = \frac{t}{2}$ Answer:- (D)

Exp:- Given DE is $t \frac{dx}{dt} + x = t \Rightarrow \frac{dx}{dt} + \frac{x}{t} = 1$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 9

. 4

IF =
$$e^{\int \frac{1}{t} dt}$$
 = $e^{\log t}$ = t; solution is x(IF) = $\int (IF) t dt$
xt = $\int t \cdot t dt \Rightarrow xt = \frac{t^2}{2} + c$; Given that x(1) = 0.5 ⇒ 0.5 = $\frac{1}{2} + c \Rightarrow c = 0$
 \therefore The required solution is xt= $\frac{t^2}{2} \Rightarrow x = \frac{t}{2}$

Q. No. 26 – 51 carry Two Marks Each

26. A 220 V, 15 kW, 1000 rpm shunt motor with armature resistance of 0.25Ω , has a rated line current of 68 A and a rated field current of 2.2 A. The change in field flux required to obtain a speed of 1600 rpm while drawing a line current of 52.8 A and a field current of 1.8 A is

27. In the circuit shown, an ideal switch S is operated at 100 kHz with a duty ratio or50%. Given that Δi_c 1.6 A peak-to-peak and I_0 is 5A dc, the peak current in S is

Answer:- (C)

Exp:- Peak current = $I_0 + \frac{\Delta i_c}{2} = 5 + \frac{1.6}{2} = 5.8A$

28. A cylindrical rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator no-load voltage is 1.5 pu and the infinite bus voltage is 1 pu. The inertia constant of the generator is 5MW_{-s} / MV and the generator reactance is 1 pu. The critical clearing angle, in degrees, for a three-phase dead short circuit fault at the generator terminal is

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

 $v = 1.p\mu$ Answer:- (D) Exp:-ണ്ണ 0.5 E = 1.5 p.u $x_{s} = 1.p.u$ $P_{max} = \frac{1.5 \times 1}{1.5} = 1 p.u$ $P_{m} = 0.5 \, p.u$ $P_m = P_{max} \ sin \, \delta_O \Rightarrow 80 = 30^O; \ \delta_{max} = 180 - 80 = 150^O$ $\delta_{or} = \cos^{-1} \left\lceil \sin \delta_0 \left(\pi - 280 \right) + \cos max \right\rceil$ $=\cos^{-1}\left[0.5\left(\pi-\frac{\pi}{3}\right)+\cos 150\right]=79.6^{\circ}$ $I_{RL} = V_3 \cos \theta$ $I = \frac{136 \times 0.45}{5} = 12.24A$ $P = VI \cos \theta = 136 \times 12.24 \times 0.45 \cong 750 \text{ W}$ $\frac{y_{sn12}}{2} = 1 \Rightarrow y_{sin2} = 2$

29. For the system shown below, S_{D1} and S_{D2} are complex power demands at bus 1 and bus 2 respectively. If $|V_2| = 1$ pu, the VAR rating of the capacitor (Q_{G2}) connected at bus 2 is

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

$$\begin{split} I_{12} &= \frac{V_1 - V_2}{2} = \frac{1 |\underline{0} - 1| - 30}{j0.5} = 1 - j0.288 \\ \text{Current } S_{D2} &= 1 |\underline{-30}\text{; Current in } Q_{G2} = 1 |\underline{-30} - [1 - j0.268] = 0.268 |\underline{-120} \\ \text{VAR rating of capacitor} &= |V_2| \left| I_Q \right| \sin \left(|V_2| |I_2| \right) = 1 \times 0.268 \times \sin (+90) = 0.268 \end{split}$$

30. The circuit shown is a

31. Let y[n] denote the convolution of h[n] and g[n], where $h[n] = (1/2)^n u[n]$ and g[n] is a causal sequence. If y[0] = 1 and $y[1] = \frac{1}{2}$, then g[1] equals (A) 0 (B) 1/2 (C) 1 (D) 3/2Answer:- (A)

Exp:-
$$h[n] = \left(\frac{1}{2}\right)^n u(n); y(0) = 1, y(1) = \frac{1}{2}$$

since $y(n) = g(n) * h(n) = \sum_{m=-\infty}^{\infty} g(m)h(n-m)$
 $g(n) = g(0) = g(1) + h(n) = h(n) = \frac{1}{2} + \frac{1}$

© All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

multiplying g(n) and h(-n); $y(0) = \frac{1}{4} \times 0 + \frac{1}{2} \times 0 + 1 \times g(0)$ $y(1) = \frac{1}{2} = \frac{1}{2}g(0) + g(1) \Rightarrow g(1) = 0$

32. The state transition diagram for the logic circuit shown is

State machine

33. The voltage gain A_v of the circuit shown below is

$$(A) |A_{v}| \approx 200$$

$$(B) |A_{v}| \approx 100$$

$$(B) |A_{v}| \approx 100$$

$$(D) |A_{v}| \approx 10$$
Answer:- (D)

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Exp:-

 $\begin{array}{l} \text{KVL in input loop, } 13.7\text{-}\left(I_{\text{c}}+I_{\text{B}}\right)12k-100k\left(I_{\text{B}}\right)-0.7=0\\ \Rightarrow I_{\text{B}}=9.9\mu\text{A}\text{; } I_{\text{c}}=\beta I_{\text{B}}=0.99\text{mA}\text{; } I_{\text{E}}=1\text{mA} \end{array}$ $\therefore r_{e} = \frac{26mA}{I_{e}} = 26\Omega; z_{i} = \beta r_{e} = 2.6k\Omega; \therefore A_{v} = \frac{(100k || 12k)}{26} = 412$ $z_{i}' = z_{i} || \left(\frac{100k}{1+412}\right) = 221\Omega; A_{vs} = A_{v} \frac{z_{i}'}{z_{i}'+R_{s}} = (412) \left(\frac{221}{221+10k}\right)$ $|\mathsf{A}_{ve}| \approx 10$

If $V_{A} - V_{B} = 6V$, then $V_{C} - V_{D}$ is 34.

Answer:- (A)

Exp:- $I = \frac{V_A - V_B}{2} = \frac{6}{2} = 3A$; Since current entering any network is same as leaving in $V_C - V_D$ branch also it is I = 3A

The maximum value of $f(x) = x^3 - 9x^2 + 24x + 5$ in the interval [1, 6] is 35. (A) 21 (B) 25 (C) 41 (D) 46

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 14

Answer:- (B) Exp:- Given, $f(x) = x^3 - 9x^2 + 24x + 5$ f'(x) = 0 for stationary values $\Rightarrow 3x^2 - 18x + 24 = 0; \Rightarrow x = 2,4; f''(x) = 6x - 18$ f''(2) = 12 - 18 < 0; f''(4) = 24 - 18 > 0Hence f(x) has maximum value at x=2 \therefore The maximum value is $2^3 - 9 \times 2^2 + 24 \times 2 + 5 = 25$ Given that $A = \begin{bmatrix} -5 & -3 \\ 2 & 0 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, the value of A^3 is 36. (A) 15A + 12I (B) 19A + 30I (C) 17A + 15I (D) 17A + 21I Answer:- (B) Exp:- Given: $A = \begin{vmatrix} -5 & -3 \\ 2 & 0 \end{vmatrix};$ Characteristic equation of A is $|A-I\lambda| = 0 \Rightarrow \begin{vmatrix} -5-\lambda & -3\\ 2 & 0-\lambda \end{vmatrix} = 0$ $\Rightarrow (-5 - \lambda)(-\lambda) + 6 = 0 \Rightarrow 5\lambda + \lambda^2 + 6 = 0$ $\Rightarrow \lambda^2 = -5\lambda - 6$ and $\lambda^3 = -5\lambda^2 - 6\lambda = -5(-5\lambda - 6) - 6\lambda(\because \lambda^2 = -5\lambda - 6)$ $\Rightarrow \lambda^{3} = 25\lambda - 6\lambda + 30 = 19\lambda + 30$ Every matrix satisfies its characteristic equation : A³ = 19A + 30I

37. A single phase 10 kVA, 50 Hz transformer with 1kV primary winding draws 0.5 A and 55 W, at rated voltage and frequency, on no load. A second transformer has a core with all its linear dimensions $\sqrt{2}$ times the corresponding dimensions of the first transformer. The core material and lamination thickness are the same in both transformers. The primary windings of both the transformers have the same number of turns. If a rated voltage of 2 kV at 50 Hz is applied to the primary of the second transformer, then the no load current and power, respectively, are

(A) 0.7 A, 77.8 W	(B) 0.7 A, 155.6 W
(C) 1 A, 110 W	(D) 1 A, 220 W

Answer:- (B)

Exp:- Core loss \propto core volume; $P_{c2} = (\sqrt{2})^3$; $P_{c1} = (\sqrt{2})^3 \times 55 = 155W$ Core loss component $I_{c2} = (\sqrt{2})^3 \times I_{c1} = 2\sqrt{2} \left[\frac{55}{1000}\right] = 0.155A$ $I_{c2} = \frac{55}{1000} = 0.055A;$ Magnetizing component, $I_{\phi 1} = \sqrt{I_{e1}^2 - I_{c1}^2} = \sqrt{0.5^2 - 0.055^2} = 0.4969A$ Now reluctance $R_{12} = \frac{R_{11}}{\sqrt{2}}$; $\phi_{m1} = \frac{1000}{\sqrt{2}\pi f N_1}$ and $\phi_{m2} = \frac{2000}{\sqrt{2}\pi f N_1} = 2\phi_{m1}$ But $\phi_{m1} = \frac{mmf}{reluctance} = \frac{I_{\phi 1}N_1}{Rl_1}$; Also $\frac{I_{\phi 2}N_1}{Rl_2} = \phi_{m2} = 2\phi_{m1} = \frac{2I_{\phi 1}N_1}{Rl_1}$ $\therefore I_{\phi 2} = \frac{Rl_2}{Rl_1}(2I_{\phi 1}) = \sqrt{2}I_{\phi 1} = \sqrt{2} \times 0.4969 = 0.702A$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

ATEFORUM gingering Success

38. The locked rotor current in a 3-phase, star connected 15 kW, 4-pole, 230 V, 50 Hz induction motor at rated conditions is 50 A. Neglecting losses and magnetizing current, the approximate locked rotor line current drawn when the motor is connected to a 236 V, 57 Hz supply is

(A) 58.5 A (B) 45.0 A (C) 45.7 A (D) 55.6 A Answer:- (B) Exp:- $I_2 = \frac{E_2}{z_2} = \frac{E_2}{\sqrt{R_2^2 + X_2^2}} = \frac{E_2}{X_2}$ since no losses $= \frac{E_2}{\omega_2 L_2}$

$$I_2 \propto \frac{E_2}{f_2}$$
; $\frac{50}{I_2} = \frac{230}{50} \times \frac{57}{236} \Rightarrow I_2 = 45A$

39. An analog voltmeter uses external multiplier settings. With a multiplier setting of $20 k\Omega$, it reads 440 V and-with a multiplier setting of $80 k\Omega$ it reads 352 V. For a multiplier setting of $40 k\Omega$, the voltmeter reads

(A) 371 V (B) 383 V (C) 394 V (D) 406 V

Answer:-(D)

Exp:- Let resistance of voltmeter be R $k\Omega$

40. The input x(t) and output y{t) of a system are related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$.

The system is

(A) time-invariant and stable(C) time-invariant and not stable

(B) stable and not time-invariant

(D) not time-invariant and not stable

Answer:- (B)

Exp:-
$$y(t) = \int_{-\infty}^{t} x(\tau) \cos(3\tau) d\tau$$

Since y(t) and x(t) are related with some function of time, so they are not time-invariant.

Let x(t) be bounded to some finite value k.

$$y(t) = \int_{-\infty}^{1} K \cos(3\tau) d\tau < \infty$$

y(t) is also bounded. Thus System is stable.

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

41. The feedback system shown below oscillates at 2 rad/s when Y(s)R(s) +K(s + 1)+2s+1as 2 (A) K = 2 and a = 0.75(B) K = 3 and a = 0.75 (C) K = 4 and a = 0.5(D) K = 2 and a = 0.5Answer:- (A) Exp:- Characteristic equatin is 1+G(s)H(s) = 0 $1 + \frac{k(s+1)}{s^3 + as^2 + 2s + 1} = 0; \ s^3 + s^2a + s(k+2) + (k+1) = 0$ s³ 1 k+2s² k+1а (k+2)a - (k+1) S^1 а s^0 $as^{2} + (k + 1) = 0; s = j\omega; s^{2} = -\omega^{2}; \omega = 2$ $-a\omega^2 + (k+1) = 0; a\omega^2 = k+1; 4a=k+1;$ From options, k=2, a=0.75 42. The Fourier transform of a signal h(t) is $H(j\omega) = (2\cos\omega)(\sin 2\omega) / \omega$. The value of h(0) is (A) 1/4 (B) 1/2 (D) 2 (C) 1 Answer:- (C) $\frac{1}{2} = h'(t)$ sin2ω Exp:ω -2 2 $2\cos\omega\left(\frac{\sin2\omega}{\omega}\right)$ $\longleftrightarrow h(t) = h'(t-1) + h'(t+1)$ $\left[e^{j\omega} + e^{-j\omega}\right] \left(\frac{\sin 2\omega}{\omega}\right)$ ¹/₂

43. The state variable description of an LTI system is given by

$$\begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{pmatrix} = \begin{pmatrix} 0 & a_{1} & 0 \\ 0 & 0 & a_{2} \\ a_{3} & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 17

where y is the output and u is the input. The system is controllable for

- (A) $a_{1} \neq 0, a_{2} = 0, a_{3} \neq 0$ (B) $a_{1} = 0, a_{2} = 0, a_{3} \neq 0$ (C) $a_{1} = 0, a_{2} = 0, a_{3} = 0$ (D) $a_{1} \neq 0, a_{2} \neq 0, a_{3} = 0$ Answer:- (D) Exp:- $Q_{c} = \begin{bmatrix} B & AB & A^{2}B \end{bmatrix}$; $A = \begin{bmatrix} 0 & a_{1} & 0 \\ 0 & 0 & a_{2} \\ a_{3} & 0 & 0 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$; $AB = \begin{bmatrix} 0 \\ a_{2} \\ 0 \\ 0 \end{bmatrix}$; $A^{2}B = \begin{bmatrix} a_{1}a_{2} \\ 0 \\ 0 \end{bmatrix}$ $Q_{c} = \begin{bmatrix} 0 & 0 & a_{1}a_{2} \\ 0 & a_{2} & 0 \\ 1 & 0 & 0 \end{bmatrix}$; If rank of $Q_{c} = 3$ = order of matrix, then Q_{c} is controllable $a_{1} \neq 0$ $a_{3} = 0$ then $|Q_{c}| \neq 0$
- 44. Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B is

Answer:- (A)

Exp:- Power transferred from circuit A to circuit A = VI= $\left(\frac{7}{R+2}\right)\left(\frac{6+10R}{R+2}\right) = \frac{42+70R}{(R+2)^2}$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

GATEFORUM Engineering Success

45. Consider the differential equation $\frac{d^{2}y(t)}{dt^{2}} + 2\frac{dy(t)}{dt} + y(t) = \delta(t) \text{ with } y(t)\Big|_{t=0} = -2 \text{ and } \frac{dy}{dt}\Big|_{t=0} = 0.$ The numerical value of $\frac{dy}{dt}\Big|_{t=0^+}$ is (A) -2 (B) -1 (C) 0 (D) 1 Answer:- (D) $\text{Exp:-} \quad \frac{d^{2}y\left(t\right)}{dt^{2}} + \frac{2\,dy\left(t\right)}{dt} + y\left(t\right) = \delta\left(t\right)$ Converting to s – domain, $s^{2}y\left(s\right)-sy\left(0\right)-y'\left(0\right)+2\left\lceil sy\left(s\right)-y\left(0\right)\right\rceil +y\left(s\right)=1$ $[s^{2} + 2s + 1]y(s) + 2s + 4 = 1$ $y(s) = \frac{-3 - 2s}{(s^2 + 2s + 1)}$ Find inverse lapalce transform $y(t) = [-2e^{-t} - te^{-t}]u(t)$ $\frac{dy(t)}{dt} = 2e^{-t} + te^{-t} - e^{-t}$ $\frac{dy(t)}{dt} = 2 - 1 = 1$ The direction of vector A is radially outward from the origin, with 46. $|A| = kr^n$ where $r^2 = x^2 + y^2 + z^2$ and k is constant. The value of n for which $\nabla A = 0$ is (A) -2 (B) 2 (C) 1 (D) 0 Answer:- (D) Exp:- Given: $r^2 = x^2 + y^2 + z^2 \Rightarrow r = (x^2 + y^2 + z^2)^{1/2}$ $\left|A\right| = kr^{n} = k\left(x^{2} + y^{2} + z^{2}\right)^{n/2} \Rightarrow A = \left(i + j + k\right)k\left(x^{2} + y^{2} + z^{2}\right)^{n/2}$ $\nabla \cdot \mathbf{A} = \mathbf{0} \Rightarrow \left(\mathbf{i} \frac{\partial}{\partial \mathbf{x}} + \mathbf{j} \frac{\partial}{\partial \mathbf{y}} + \mathbf{k} \frac{\partial}{\partial z} \right) \cdot \left(\mathbf{i} + \mathbf{j} + \mathbf{k} \right) \mathbf{k} \left(\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 \right)^{n/2} = \mathbf{0}$ $\Rightarrow \sum k \left(x^2 + y^2 + z^2\right)^{n/2} = 0 \Rightarrow \frac{n}{2} \left| \left(x^2 + y^2 + z^2\right)^{\frac{n}{2} - 1} \right| \left[2x + 2y + 2z \right] = 0$ \Rightarrow n = 0

47. A fair coin is tossed till a head appears for the first time. The probability that the number of required tosses is odd, is

(A) 1/3 (B) 1/2 (C) 2/3 (D) 3/4

Answer:- (C)

Exp:- $P(odd tosses) = P(H) + P(TTH) + P(TTTTH) + \dots$

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 19

Common Data Questions: 48 & 49

With 10V dc connected at port A in the linear nonreciprocal two-port network shown below, the following were observed:

- (i) 1Ω connected at port B draws a current of 3 A
- (ii) 2.5Ω connected at port B draws a current of 2 A

Common Data Questions: 50 & 51

In the 3-phase inverter circuit shown, the load is balanced and the gating scheme is 180° - conduction mode. All the switching devices are ideal

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 20

50. The rms value of load phase voltage is (A) 106.1 V (B) 141.4 V (C) 212.2 V (D) 282.8 V Answer:- (B) Exp:- RMS value of line voltage = $V_L = \sqrt{\frac{2}{3}}V_s$ RMS value of phase voltage = $\frac{V_L}{\sqrt{3}} = \frac{\sqrt{2}}{3}V_s = \frac{\sqrt{2}}{3} \times 300 = 141.42V$

51. If the dc bus voltage $V_d = 300 \text{ V}$, the power consumed by 3-phase load is (A) 1.5 kW (B) 2.0 kW (C) 2.5 kW (D) 3.0 kW Answer:- (D)

Exp:- P =
$$3 \cdot \frac{V_{ph}^2}{R_{ph}} = 3 \times \frac{(141.42)^2}{20} = 3000W$$

Linked Answer Questions: Q.52 to Q.55 Carry Two Marks Each

Statement for Linked Answer Questions: 52 & 53 In the circuit shown, the three voltmeter readings are $V_1 = 220V$, $V_2 = 122V$, $V_3 = 136V$

52. The power factor of the load is (A) 0.45 (B) 0.50 (C) 0.55 (D) 0.60 Answer:- (A) Exp:- $\cos \theta = \frac{v_1^2 - v_2^2 - v_3^2}{2v_1v_2} = \frac{220^2 - 122^2 - 136^2}{2 \times 122 \times 136} = 0.45$

53. If $R_L = 5\Omega$, the approximate power consumption in the load is

(A) 700 W (B) 750 W (C) 800 W (D) 850 W

Answer:- (B)

Exp:-
$$\cos \theta = \frac{R_L}{z}$$
; $0.45 = \frac{3}{z} \Rightarrow z = 11.11$
 $I = \frac{V_3}{z} = \frac{136}{11.11} = 12.24A$; $P_L = I^2 R_L = 12.24^2 \times 5 = 750W$

5

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 21

Statement for Linked Answer Questions: 54 & 55

The transfer function of a compensator is given as

$$G_{c}\left(s\right) = \frac{s+a}{s+b}$$

54. $G_{c}(s)$ is a lead compensator if

(A) a = 1, b = 2 (B) a = 3, b = 2 (C) a = -3, b = -1 (D) a = 3, b = 1

Answer:- (A)

Exp:- $\phi = \tan^{-1} \frac{\omega}{a} - \tan^{-1} \frac{\omega}{\beta}$ for phase lead ϕ should be + ve $\Rightarrow \tan^{-1}\frac{\omega}{a} > \tan^{-1}\frac{\omega}{\beta}$ \Rightarrow a < b both option (A) and (C) satisfier but option (C) will pot polar and zero as RHS of s-plane thus not possible Option (A) is right The phase of the above lead compensator is maximum at 55. (A) $\sqrt{2}$ rad / s (B) $\sqrt{3}$ rad / s (C) $\sqrt{6}$ rad/s (D) $1/\sqrt{3}$ rad/s Answer:- (A) Exp:- For a lead compensator, a < b and a and b should be positive, (in RHP)

else it acts as a oscillator; \therefore a=1, b=2, $\omega_{max} = \sqrt{ab} = \sqrt{2}$ rad/s

Q. No. 56 -60 Carry One Mark Each

56. Which one of the following options is the closest in meaning to the word given below? Latitude

Latitude	
(A) Eligibility	(B) Freedom
(C) Coercion	(D) Meticulousness

Answer:- (B)

57. Choose the most appropriate alternative from the options given below to complete the following sentence:

		the mattress out
on the balcony		
(A) should take	(B) shall take	
(C) should have taken	(D) will have taken	
Answer:- (C)		

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

- 58. One of the parts (A, B, C, D) in the sentence given below contains an ERROR. Which one the following is INCORRECT?
 I requested that the should be given the driving test today instead of tomorrow.
- (A) requested that (B) should be given (C) the driving test (D) instead of tomorrow Answer:- (B)
- 59. Choose the most appropriate word from the options given below to complete the following sentence:

Given the seriousness of the situation that he had to face, his ____ was impressive. (A) beggary (C) jealousy

(,,) begguiy	(c) jearcacy
(B) nomenclature	(D) nonchalance
Answer:- (D)	

60. If $(1.001)^{1259} = 3.52$ and $(1.001)^{2062} = 7.85$, then $(1.001)^{3321} =$ (A) 2.23 (B) 4.23 (C) 11.37 (D) 27.64 Answer:- (D) Exp:- let 1.001 = x $x^{1259} = 3.52$ and $x^{2062} = 7.85$

 $x^{3321} = x^{1259}, x^{2062} = 3.52 \times 7.85 = 27.64$

Q. No. 61 –65 Carry Two Marks Each

61. The data given in the following table summarizes the monthly budget of an average household.

Amount (Rs)		
4000		
1200		
2000		
1500		
1800		

The approximate percentage of the monthly budget **NOT** spent on saving is (A) 10% (B) 14% (C) 81% (D) 86%

Answer:- (D)

Exp:- Total budget = 10,500 Expenditure other than savings = 9000 Hence, $\frac{9000}{10500}$ =86%

62. Raju has 14 currency notes in his pocket consisting of only Rs.20 notes and Rs. 10 notes. The total money value of the notes is Rs.230. The number of Rs. 10 notes that Raju has is

(A) 5 (B) 6 (C) 9 (D) 10

Answer:- (A)

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 23

- Exp:- Let the number of Rs. 20 notes be x and Rs. 10 notes be y 20x + 10y = 230 and x + y = 14Solving above equations, we have x=9 and y=5 Hence the numbers of 10 rupee notes are 5
- 63. A and B are friends. They decide to meet between 1 PM and 2 PM on a given day. There is a condition that whoever arrives first will not wait for the other for more than 15 minutes. The probability that they will meet on that day is

64. There are eight bags of rice looking alike, seven of which have equal weight and one is slightly heavier. The weighting balance is of unimited capacity. Using this balance, the minimum number of weighings required to identify the heavier bag is

(A) 2 (B) 3 (C) 4 (4) 8 Answer:- (A)

Exp:- Let us categorize the bags in three groups as

 $A_1 A_2 A_3$ $B_1 B_2 B_3$ $C_1 C_2$ 1^{st} weighing A vs BCase -1 $A_1 A_2 A_3 = B_1 B_2 B_3$ $A_1 A_2 A_3 \neq B_1 B_2 B_3$ Then either C_1 or C_2 is heavierEither A or B would be heavier(Say A >B) 2^{nd} weighing $C_1 vs C_2$ $C_1 vs C_2$, then C_1 If $A_1 = A_2$, then A_3 If $C_1 < C_2$, then C_2 If $A_1 > A_2$, then A_1 If $A_1 < A_2$, then A_2

[©] All rights reserved by Gateforum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. 24

65. One of the legacies of the Roman legions was discipline. In the legions, military law prevailed and discipline was brustal. Discipline on the battlefield kept units obedient, intact and fighting, even when the odds and conditions were against them

Which one of the following statements best sums up the meaning of the above passage?

(A) Through regimentation was the main reason for the efficiency of the Roman legions even in adverse circumstances.

(B) The legions were treated inheritance from their seniors.

(C) Discipline was the armies' inheritance from their seniors.

(D) The harsh discipline to which the legions were subjected to led to the odds and conditions being against them.

Answer:- (A)

