## <u>WORK SHEET</u> <u>BASED ON THE FOCUS AREA</u> <u>FROM CHAPTER 1</u>

- 1) A function  $f: X \longrightarrow Y$  is onto, then the range of f is .....
- 2) The function  $f: N \longrightarrow N$  given by f(x) = 2x is
  - (A) one-one and onto (B) one-one and not onto
  - (C) not one-one and onto (C) not one-one and not onto

3) Which of the following functions is a bijective function. Explain with reasons.



4) Consider the function  $f:N\longrightarrow N$  given by  $f(x)=3x+2,\ x\in N$  .

Prove that f is one-one and not onto.

5) Consider the function  $f:N\longrightarrow N$  given by  $f(x)=x^3,\ x\in N$ .

Prove that f injective but not surjective.

6) Consider the function  $f: N \longrightarrow N$  given by  $f(x) = \begin{cases} x, & \text{if } x \leq 3 \\ x - 1, & \text{if } x > 3 \end{cases}$ 

Prove that f is not a one-one function.

7) Consider the function  $f: \left[0, \frac{\pi}{2}\right] \longrightarrow R$  given by f(x) = sinx and

- $g: \left[0, \frac{\pi}{2}\right] \longrightarrow R$  given by g(x) = cosx.
- (i) Show that f and g are one-one functions.
- (ii) Is f + g one-one? Why?
- 8) The number of bijective functions from  $A=\{1,2,3,4,5\}$  to  $B=\{a,b,c,d,e\}$  is
  - A) 24 B) 125 C) 25 D) 120

9) Consider the real functions *f* and *g* defined by f(x) = 3 - 2x and  $g(x) = 2x^2 - 1$ . Which of them is a bijective function? Explain with reasons.

10) Let  $f:\{1,3,4\} \rightarrow \{1,2,5\}$  and  $g:\{1,2,5\} \rightarrow \{1,3\}$  given by

$$f = \{(1,2), (3,5), (4,1)\}$$
 and  $g = \{(1,3), (2,3), (5,1)\}$ . Then find  $g \circ f$ .

- 11) Find  $f \circ g$  and  $g \circ f$  for the following real functions given by
  - (i) f(x) = |x| and g(x) = |3x + 4| and (ii)  $f(x) = 16x^4$  and  $g(x) = x^{\frac{1}{4}}$ .
- 12) Consider the real function given by f(x) = 3x + 2.

Show that f is invertible and find the inverse of f.

13) Show that  $f: [-1,1] \to R$  given by  $f(x) = \frac{x}{x+2}$  is one-one.

Also find the inverse of the function  $f: [-1,1] \rightarrow \text{Range } f$ .

- 14) If  $f: R \longrightarrow R$  defined by  $f(x) = x^2 3x + 2$ . Find  $(f \circ f)(x)$  and  $(f \circ f)(1)$ .
- 15) Let  $A = R \left\{\frac{7}{5}\right\}$  and  $B = R \left\{\frac{3}{5}\right\}$  and functions  $f : A \longrightarrow B$  and  $g : B \longrightarrow A$

defined by  $f(x) = \frac{3x+4}{5x-7}$  and  $g(y) = \frac{7y+4}{5y-3}$ . Find  $g \circ f$ .

16) Let *f* and *g* are two functions defined on *R* as f(x) = 2x - 3 and  $g(x) = \frac{3+x}{2}$ .

Prove that f and g are inverse of each other.