

SECOND DEGREE EQUATIONS

Points to Remember

	Statement	Algebra	
•	Two more than a number	x + 2	
•	Two less than a number	x-2	
•	Two times of a number	2 x	
•	Half of a number	$\frac{x}{2}$ or $\frac{1}{2}x$	
•	Two consecutive natural numbers	x, x + 1	
* *	Two consecutive even numbers Two consecutive odd numbers	x, x + 2 x, x + 2	
•	A number and its reciprocal	$x, \frac{1}{x}$	
•	Two consecutive term of an arithmetic sequence		
	with common difference 'd'	x, x + d	
•	Square of a number	x ²	
•	Two numbers with sum 15	x, 15 - x	
•	Two numbers with difference 15	<i>x</i> , <i>x</i> + 15 or <i>x</i> , <i>x</i> - 15	
•	Two numbers with product 15	$x, \frac{15}{x}$	
•	$(x + a)^2 = x^2 + 2ax + a^2$		
	$(x-a)^2 = x^2 - 2 ax + a^2$		
•	Method of solving second degree equations of the form		
	$(x + a)^2 = b^2 \text{ OR } (x - a)^2 = b^2$		
		a) ² = b^2	
	$x + a \pm b$ $x - a$	$a = \pm b$	
	x + a = b Or $x + a = -b$ $x - a$	a = b Or $x - a = -b$	
	x = b - a Or $x = -b - a$	x = b + a Or $x = -b + a$	

VIDYA JYOTHI WORKSHEETS Class 10 🕨

• To convert $x^2 + 2$ ax into a perfect square, we have add the square of half of the coefficient of x
Example : $x^2 + 2x = 24$
Here the coefficient of x is 2
Square of half of it is 1^2
$x^2 + 2x + 1^2 = 24 + 1^2$
$(x + 1)^2 = 25$
$(x + 1)^2 = 5^2$
$x + 1 = \pm 5$
x + 1 = 5 Or $x + 1 = -5$
x = 5 - 1 $x = -5 - 1$
= 4 = -6
• The general form of a second degree equation is $ax^2 + bx + c = 0$, $a \neq 0$
Two solutions are $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Worksheet 1

Complete the following table

Statement	Equation	Solution
a) 12 added to a number gives 40.	x + 12 = 40	x = 40 - 12 = 28
find the number.		
b) 12 subtracted from a number gives to	<i>x</i> – =	
c)	<i>x</i> + 3 = 14	
d)7 subtracted from, 3 times of a		
number is 20. Find the number ?		
e) 5 added to one fourth of a number		
is 10. Find the number?		
f) Square of a number is 100.		
Find the number?		
g)	$x^2 = 36$	
h)	$x^2 = 10$	
i) Square of $x + 3$ is 36. Find x ?	$(x + 3)^2 = 36$	$x + 3 = \pm 6$
		x + 3 = 6 Or x + 3 = -6
		x = 6 - 3 Or $x = -6 - 3$
		x = 3 $x = -9$

VIDYA JYOTHI WORKSHEETS Class 10 🕨

.

j) Square of $x + 8$ is 81. Find x?		
k) The value of $x^2 + 4x + 4$ is 25. Find x	$x^2 + 4x + 4 = 25$	
	$(x + 2)^2 = 25$	
l) The value of $x^2 - 14 x + 49$ is 64. Find x?	$(x-7)^2 = 64$	
m) The value of $x^2 - 6x + 9$ is 100. Find x?		

From the above table, write down the first degree equations

Write down the second degree equations.

Worksheet 2

Each side of a square is increased by 4 cm, its area becomes 625 cm^2 . What is the side of original square?

One side of original square = x

One side of new square = $x + \square$

Area of new square = $(x + \Box)^2$

$$(x + \Box)^2 = 625$$
$$x + \Box = \sqrt{625}$$
$$x + \Box = 25$$
$$x = \Box - \Box$$
$$= \Box$$

 \therefore One side of the original square = \square cm.

Worksheet 3

Length of a rectangle is 10 cm more than its breadth and its area is 200 cm^2 . Find its length and breadth?

Breadth = x
Length =
$$x + \square$$

Area = $x (x + \square)$
 $x (x + \square) = 200$
 $x^2 + \square = 200$
 $x^2 + 10x + \square = 200 + \square$
 $(x + \square)^2 = \square$
 $x + \square = \square$
 $x = \square - \square$
 $= \square$
 \therefore Breadth of the rectangle = \square cm
Length of the rectangle = $\square + 10$
 $= \square \operatorname{cm}_{VIDYA JYOTHI WORKSHEETS Class 10}$

Worksheet 4

In the semicircle ACB, PC is \perp^r to AB. Length of AP is 12 cm more than PB and PC = 8 cm. Find the diameter of the circle.

$$PB = x$$

$$PA = x + \square$$

$$PA \times PB = PC^{2}$$

$$(x + \square) x = 8^{2}$$

$$x^{2} + 12 x + \square = 8^{2} + \square$$

$$(x + \square)^{2} = \square$$

$$x + \square = \square$$

$$x = \square - \square$$

$$= \square$$

$$x = \square - \square$$

$$= \square$$

$$PB = \square cm$$

$$PA = \square + 12$$

$$= \square cm$$

$$Diameter = PA + PB$$

$$= \square + \square$$

$$= \square cm$$

х

Worksheet 5

52

Hypotenuse of a right triangle is 2 less than 2 times its base and the third side is 2 more than its base. Find the length of the sides?

.....

Base = x
Hypotenuse =
$$2x - \square$$

Third side = $x + \square$
(Base)² + (Altitude)² = (Hypotenuse)²
 $x^2 + (x + \square)^2 = (2x - \square)^2$
 $x^2 + x^2 + \square x + \square = \square x^2 - \square x - \square = 0$
 $2x^2 + \square x + \square - \square x^2 + \square x - \square = 0$
 $-2x^2 + \square x = 0$
 $2x^2 - \square x = 0$
 $x^2 - \square x = 0$
 $x^2 - \square x = 0 + \square$
 $(x - \square)^2 = \square$
 $x - \square = \square$
 $x = \square + \square$

$$= \square$$

Base = \square cm
Hypotenuse = 2 \square - 2
= 2 \square - 2
= \square cm
Third side = \square + 2
= \square cm

Worksheet 6

Complete the following table.

Equations	Completing the square	Solutions
$x^2 + 10x = 24$	$x^2 + 10x + 5^2 = 24 + 5^2$	$x + 5 = \pm 7$
	$x^2 + 10x + 25 = 49$	$x = \pm 7 - 5$
	$(x + 5)^2 = 49$	x = 2, x = -12
$x^2 + 8 x = 20$		
$x^2 - 12 x = 28$		
$x^2 - 6x - 16 = 0$		
$x^2 + 3x = 40$		
$x^2 - 2x = 5$		

Worksheet 7

How many terms of the arithmetic sequence 7, 9, 11, must be added to get 40?

7, 9, 11, first term, f = \square common difference, d = \square

sum = 40

$$\frac{d}{2}n^{2} + \left[f - \frac{d}{2}\right]n = 40$$
$$\frac{\Box}{2}n^{2} + \left[\Box - \frac{\Box}{2}\right]n = 40$$
$$\Box n^{2} + \Box n = 40$$
$$\Box n^{2} + \Box n - 40 = 0$$
$$a = \Box, b = \Box, c = \Box$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

VIDYA JYOTHI WORKSHEETS Class 10 ▶

$$x = \frac{-\Box \pm \sqrt{\Box^2 - 4 \times \Box \times \Box}}{2 \times \Box}$$
$$= \frac{-\Box \pm \sqrt{\Box - \Box}}{2 \times \Box}$$
$$= \frac{-\Box \pm \sqrt{\Box}}{\Box}$$
$$= \frac{-\Box \pm \sqrt{\Box}}{\Box}$$
$$x = \Box, \Box$$

ie, sum of first \Box terms of the sequence 7, 9, 11, is 40.

Worksheet 8

The perimeter of a rectangle is 82 cm and its area is 400 square cm. Find it's sides.

Breadth of the rectangle be x.

Perimeter = 82 cm. 2 (length + breadth) = 822 (length + x) = 82length + $x = \frac{82}{2} = 41$ length = 41 - xArea of the rectangle = 400 sq. cmlength \times breadth = 400 $(41 - \Box) \times x = 400$ $41 \square - \square^2 = 400$ $-\Box^{2} + 41\Box = 400$ $-\Box^2 + 41\Box - 400 = 0$ $\square^2 + 41\square + 400 = 0$ a = 1, b = -41, c = 400 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-\Box \pm \sqrt{\Box^2 - 4 \times \Box \times \Box}}{2 \times \Box}$ $=\frac{\Box \pm \sqrt{\Box^2 - \Box}}{2 \times \Box}$ ORKSHEETS Class 10 🕨

$$= \frac{- \pm \sqrt{-}}{-}$$
$$= \frac{-+-}{-}, \frac{-+-}{-}$$
$$= \frac{-}{-}, \frac{-}{-}$$
$$= \Box, \Box$$

Breadth = \Box cm, Length = \Box cm

ANSWERS

Worksheet 1

- x+12 = 40, x = 40 12 = 28a.
- x 12 = 26; x = 26 + 12 = 38b.
- 3 added to a number gets 16. What is the number? c. x = 14 - 3 = 11
- d. 3x 7 = 20; 3x = 20 + 7

$$3x = 27, \ x = \frac{27}{3} = 9$$

e. $\frac{x}{4} + 5 = 10$; $\frac{x}{4} = 10 - 5$

$$\frac{x}{4} = 5, \quad x = 5 \times 4 = 20$$

- x = 10, -10f. $x^2 = 100;$
- The square of a number is 36. What is the number? g. x = 6, -6.
- The square of a number is 10. What is the number? h.

$$x = \sqrt{10}, \quad -\sqrt{10}$$

:

j.
$$(x+8)^2 = 81$$

 $x+8 = 9$
 $x = 9-8$
 $x = -9-8$
 $x = -9-8$
 $x = -17$

k. x + 2 = 5 or x + 2 = -5x = 5 - 2 = 3 or x = -5 - 2 = -71. x - 7 = 8 or x - 7 = -8x = 8 + 7x = -8 + 7x = -1x = 15

VIDYA JYOTHI WORKSHEETS Class 10 🕨

m. $(x-3)^2 = 100$;	$x - 3 = \pm 10$	x - 3 = -10
	x - 3 = 10	x = -10 + 3
	x = 10 + 3	x = -7
	x = 13	

n. x + 12 = 40 x - 12 = 26 x + 3 = 14 3x - 7 = 20 $\frac{x}{4} + 5 = 10$ o. $x^2 = 100$ $x^2 = 36$ $x^2 = 10$ $(x + 3)^2 = 36$ $(x + 8)^2 = 81$ $x^2 + 4x + 4 = 25$ $(x - 7)^2 = 64$ $(x - 3)^2 = 100$

Worksheet 2

One side of the original square = xOne side of the new square = x + 4Area of the new square = $(x + 4)^2$ $(x + 4)^2 = 625$ $x + 4 = \sqrt{625}$ x + 4 = 25x = 25 - 4 = 21

One side of the original square = 21 cm

Worksheet 3

Breadth = xLength = x + 10Area = $(x + 10) \times x$ x (x + 10) = 200 $x^{2} + 10x + 25 = 200 + 25$

VIDYA JYOTHI WORKSHEETS Class 10 🛏

 $(x + 5)^2 = 225$ x + 5 = 15 x = 15 - 5 = 10Breadth = 10 cm Length = 10 + 10 = 20 cm

Worksheet 4

PB = x cm PA = x + 12 $PA \times PB = PC^{2}$ $(x + 12) \times x = 8^{2}$ x (x + 12) = 64 $x^{2} + 12x = 64$ $x^{2} + 12x + 36 = 64 + 36$ $(x + 6)^{2} = 100$ $(x + 6) = \sqrt{100}$ x + 6 = 10 x + 6 = 10 x = 10 - 6 = 4 PB = 4 cm PA = 4 + 12 = 16 cm Diameter = 4 + 16 = 20 cm

Worksheet 5

Base = xHypotenuse = 2x - 2Altitude = x + 2Base² + Altitude² = Hypotenuse² $x^{2} + (x + 2)^{2} = (2x - 2)^{2}$ $x^{2} + x^{2} + 4x + 4 = 4x^{2} - 8x + 4$ $2x^{2} + 4x + 4 - 4x^{2} + 8x - 4 = 0$ $-2x^{2} + 12 = 0$ $2x^{2} - 12 = 0$

VIDYA JYOTHI WORKSHEETS Class 10 M

$$x^{2} - 6x = 0$$

$$x^{2} - 6x + 9 = 9$$

$$(x - 3)^{2} = 3^{2}$$

$$(x - 3) = 3$$

$$x = 3 + 3 = 6$$
Base = 6 cm
Hypotenuse = 2 × 3 - 2
= 6 - 2 = 4 cm
Altitude = 3 + 2 = 5 cm

Worksheet 6

b.
$$x^{2} + 8x + 4^{2} = 20 + 4^{2}$$

 $x^{2} + 8x + 16 = 20 + 16$
 $(x + 4)^{2} = 36$
 $(x + 4) = \pm 6$
 $x + 4 = \pm 6$
 $x = \pm 6 - 4$
 $x = 2, -10$
c. $x^{2} - 12x + 6^{2} = 28 + 6^{2}$
 $(x - 6)^{2} = 64$
 $x - 6 = \pm \sqrt{64}$
 $x - 6 = \pm 8$
 $x = \pm 8 + 6$
 $x = 14, -2$
d. $x^{2} - 6x - 16 = 0$
 $x^{2} - 6x + 9 = 16 + 9$
 $(x - 3)^{2} = 25$
 $x - 3 = \pm 5$
 $x = \pm 5 + 3$
 $x = 8, -2$

VIDYA JYOTHI WORKSHEETS Class 10 ▶

e.
$$x^{2} + 3x = 40$$

 $x^{2} + 3x + \left(\frac{3}{2}\right)^{2} = 40 + \left(\frac{3}{2}\right)^{2}$
 $\left(x + \frac{3}{2}\right)^{2} = 40 + \frac{9}{4}$
 $\left(x + \frac{3}{2}\right)^{2} = \frac{169}{4}$
 $x + \frac{3}{2} = \pm \frac{13}{2}$
 $x = \frac{\pm 13}{2} - \frac{3}{2}$
 $x = 5, -8$
f. $x^{2} - 2x = 5$
 $x^{2} - 2x + 1 = 5 + 1$
 $(x - 1)^{2} = 6$
 $x - 1 = \pm \sqrt{6}$
 $x = \pm \sqrt{6} + 1$
 $x = \sqrt{6} + 1, -\sqrt{6} + 1$

Worksheet 7

7, 9, 11, First term, f = 7 common difference, d = 2 sum = 40 $\frac{d}{2}n^{2} + \left[f - \frac{d}{2}\right]n = 40$ $\frac{2}{2}n^{2} + \left[7 - \frac{2}{2}\right]n = 40$ $\ln^{2} + (7 - 1) n = 40$ $n^{2} + 6n = 40$

VIDYA JYOTHI WORKSHEETS Class 10 ▶

.....

$$n^{2} + 6n - 40 = 0$$

$$a = 1, b = 6, c = -40$$

$$n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-6 \pm \sqrt{6^{2} - 4 \times 1 \times -40}}{2 \times 1}$$

$$= \frac{-6 \pm \sqrt{36 + 160}}{2}$$

$$= \frac{-6 \pm \sqrt{196}}{2}$$

$$= \frac{-6 \pm 14}{2}, \frac{-6 - 14}{2}$$

$$= \frac{8}{2}, \frac{-20}{2}$$

$$= 4, -10$$

The sum of first 4 terms of the arithmetic sequence is 40.

Worksheet 8

Breadth = x cm Perimeter = 82 cm 2 (length + breadth) = 82 2 (length + x) = 82 length + x = $\frac{82}{2}$ = 41 length = 41 - x Area = 400 sq. cm length × breadth = 400 (41-x) × x = 400 (41-x) × x = 400 41x - x² = 400 -x² + 41x - 400 = 0 x² - 41 x + 400 = 0 a = 1, b = -41, c = 400 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = \frac{-(-41) \pm \sqrt{(-41)^2 - 4 \times 1 \times 400}}{2 \times 1}$$
$$= \frac{41 \pm \sqrt{1681 - 1600}}{2}$$
$$= \frac{41 \pm \sqrt{81}}{2}$$
$$= \frac{41 \pm 9}{2}, \quad \frac{41 - 9}{2}$$
$$= \frac{50}{2}, \quad \frac{32}{2}$$
$$= 25, \quad 16$$

Breadth = 16 cm, Length = 25 cm

.....

SOCS

.