ASSIGNMENT - 2

For the equilibrium,

 $2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$

the value of the equilibrium constant, K_c is 3.75×10^{-6} at 1069 K. Calculate the K_p for the reaction at this temperature?

Ans) $K_P = K_C . (RT)^{\Delta ng}$

$$\Rightarrow K_C = 3.75 imes 10^{-4}$$

 $\Rightarrow T = 1069K$

 Δng = moles of product- moles of reactant

 $\Delta ng = 3 - 2 = 1$

 $\Rightarrow K_P = 3.75 \times 10^{-4} \times (8.314 \times 1069)^1$

 $\Rightarrow K_P = 3.33$

The value of K_c for the reaction

 $2A \rightleftharpoons B + C$ is 2×10^{-3} . At a given time, the composition of reaction mixture is $[A] = [B] = [C] = 3 \times 10^{-4}$ M. In which direction the reaction will proceed?

Ans) For this reaction

$$2A \rightleftharpoons B + C$$

 $K_c = 2 \times 10^{-3} [[A] = [B] = [C]]$
 $Q_c = \frac{[B][C]}{[A]^2}$
 $= \frac{[3 \times 10^{-4}][3 \times 10^{-4}]}{[3 \times 10^{-4}]^4}$
 $Q_c = 1$
value of $K_c = 2 \times 10^{-3}$
Since $Q_c > K_c$ the direction of
reaction is bckwards