7.8.4 Torque and Angular Momentum For a System of Particles

Consider a system of ‘n’ particles. Total angular momentum of the sys-
tem is the sum of angular momentum of the individual particles. -

L=0 + L+ e, + 1 =3
The angular momentum of the " particle is L = r, x p,

Hence, for the system, L = Z/ =2i3r,- X p;
- But from the equation for torque, it is clear that for a system of particles,

dt  dti ' Tdt

But Z1;, = Teq *%im = Text

Since the total internal torques are contributed by the internal forces,
" as for a pair of particles it is equal and opposite.
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7.8.5 Conservation of Angular Moméntum
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L
 We have, — =71 |
€ aVC dt y | .



dL

If =0, then ET'O or L = a constant

Hence, the law of conservation of angular momentum states thg; if ng
. external torgue is acting on a particle, its angular momentum remains constant,

Solved Examples

5.

Sol.

Sol.

A force 5i-2j+3kacts on a par-
ticle whose position vector is
2i+3j+ 5k . Find the torque about
the origin.

and

Here F = 5?—2}+3I§

r=2§+3}+5ﬁ
Torque 1=1 x F
i
=15 -2
2 3

i(-10-9) - j(25-6) + k(15 +4)

]
wthh W B

~19i —19j+19k

= 19(~i - j+k)
Show that the angular momen-

tum about any point of a single"

particle moving with constant ve-
locity remains constant through-
out the motion.

Let the particle with veloci-'

ty v be at point P at some instan,
t. We want to calculate the ap t
lar momentum of the Partic]e

about an arbitrary point O.
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‘The angular momentum is
l = r x mv. Its magnitude is
mur sin@, where ¢ is the angle be-
tween r and v as shown in Fig.
Although the particle changes po-
sition with time, the line of direc-
tion of v remains the same and
hence OM = r sin @ is a constant.

Further, the direction of lis
perpendlcular to the plane of r and
v. It is into the page of the
figure.This direction does not
change with time. Thus, 4 remains
the same in magnitude and direc-
tion and is therefore conserved.

7.9 EquiLiBRIuM OF A Ricip Bopy

* A rigid body is said to be in equilibrium, if the net external force acting
on it does not change the translational and rotational states of the body.

~ 7.9.1 Conditions for Translational Equilibrium

In translatlonal equilibrium the rigid body will be at rest or it moves with
a constant veloc1ty

Consgider a rigid quy ofmass m . LetF, F,, F

‘ actmg on it.

. Net external force F.

..... be the external forces



Now, F, + F, + F + ... = g (1) (according to 2" law)
dr d
Fou =3t = :ﬁ(m )
dv
ch = '“'J .......... (2’
The body is in translational equilibrium, if v = constant or
dv
PTERRERR (3)
F.=0 ... (4)

Thus a rigid body is said to be at translational equilibrium if the net exter-
nal force acting on it is zero.
7.9.2 Condition for Rotational Equilibrium

A rigid body is said to be in rotational equilibrium if it does not rotate or
rotate with a constant angular velocity.

Let TjsTp5Ty ceeen be the external torques acting on a rigid body of mass
‘m’. .
The net external torque on the body
T =T +Tp+Ta+ ceennennn (1) _
But for a rotating body, its angular momentum is related to torque as,
5 (2) But |
exl dt --------- u l o lm
: ; ; . . . d . do
where ‘o’ is the angular velocity of the rigid body, .. %, = E(lm)= II - (3)
Thé body is in rotational equilibrium, if |
do
. ® = a constant . Hence d—t=
-, eqn. (3)- becomes 1, =0 e (4)

Thus, a rigid body is said to be in rotational equilibrium, if .the net external
torque acting on it is zero. ' '

7.9.3 Principle of Moments

It is a usual scene in the sawmill, the timber workers are trying hard to
move large wooden pieces with a strong lever (iron rod). Did you think, why
they are using large rods to lift wooden pieces? What is the use of the small
wooden piece (normally using) as a support to lift the large mass? All these
questions point to the principle of moments. : ,

The point about which the rod is supported, is called the fulcrum O. The
force (F,) applied to lift the mass is called the effort and the weight to be lifted



is called the load (F,).

As in fig. 13b, through O, a reaction R 4, —29— ‘
of the forces F, and F, is acting. The lever is F,
a system in mechamcal equilibrium. For its F, Fig. 13a
translational equilibrium, ‘
R=-F,=F,=0 cccorvrrernes (1) 'f*

For rotational equilirbium, the sum of 0

moments of all forces about the fulcrum must ¢ —d—Be—g :1’ B

be zero ' Fy Fig. 13b F
ie,dF, -dF, =0 e, (2) 8-
Since the reaction R is acting along the fulcrum, moment about O jg zero
and clockwise moments taken to be negative whlle anticlockwise moment,

° positive.
The distance of the load ‘d,’ from O is called ‘load arm’ and that of effort

(d,) is called ‘effort arm’.

Hence dF, = dF, e )
or load arm x load = effort arm x effort

This ecjua_tion represents the principle of moments for a lever.

1

The ratio of load to effort i.e., (;-‘J is called mechanical advantage (MA).
- 2 . -

ie., MA = Fz = dl
Hence by mcreasmg the effort arm we can decrease the effort.

7.9 4 Centre of Grawty

We can balance a notebook or a scale on our finger
tip. The poirit where the body balances is called centre of
gravity.

When we balance a body, 1ts weight mg is acting ver- -
tlcally downward and a reaction R is acting upward through
G. These two forces are equal but opposite such that the N

body is in translational equxhbnum
. The body is also in rotational equilibrium about G,
such that the total gravitational torque must be zero. For

the i particle, torque is given by t; = r, x mg, where r, is
the position vector of the it particle w.r.to G. '
. Total gravztauonal torque T, =21 . }

-->%

ermg
= gZmir, =0

From the above equation it is clear that Zm;r, =0, since g#Q

Hence in a region where gravity is constant then centre of gravity coin-
- cides wrth centre of mass of the body. : :




7/’-f tal bar 70 cm long and 4.00

A me€ X
kg in mass 18 supported on two

knife-edges placed 10 cm from
each end. A 6.00 kg weight is sus-
pended at 30 cm from one end.
Find the reactions at the knife-
edges. (Assume the bar to be of
uniform cross section and homo-

geneous.)

R,
r"\
h JB

T4+ - el

P
W,
The figure shows the rod AB,
the positions of the knife edges

K, and K, , the centre of gravity
of the rod at G and the suspend-

ed weight at P.

Note the weight of the rod W
acts at its centre of gravity G. The
rod is uniform in cross section and
homogeneous; hence G is at the
centre of the rod; AB = 70 cm. AG
=35 cm, AP = 30 cm, PG = 5 cm,
AK = BK, = 10 cm and K,G = K,G

‘= 25 cm. Also, W= weight of the
rod = 4.00 kg and W,= suspended
weight = 6.00 kg; R, and R, are

" the normal reactions of the sup-

port at the knife edges.
' For translational equilibrium
of the rod, R, +R, -W, -W=0 \Q)
Note W, and W act vertically
down and R and R, act.vertically up.
For considering rotational
equilibrium, we take moments of
the forces. A convenient point to
take moments about is G. The
moments of R, and W, are anti-
clockwise (+ve), whereas the mo-
ment of R, is clockwise (—ve).
For rotational equilibrium,
Loy - .

N

R, (K,G) + W, (PG) + R, (K,G) = 0 ......

(i)
It is given that W = 4.00g N~
and W, = 6.00g N, where g = ac-
celeration due to gravity. We take
g=98 m/s’
With numerical values insert-
ed, from (i)
R, + R, - 4.00g - 6.00g = 0
or R, + R, = 10.00g N
= 98.00 N

----------

From (i) - 0.25 R, + 0.05 W, + 0.25 R, =0

Sol.

orR,-R =12gN=1176N ... (iv)
From (iii) and (iv), R, = 54.88 N,
R,=43.12 N

Thus the reactions of the support
are about 55 N at K, and 43 N at K.
A 3m long ladder weighing 20 kg
leans on a frictionless wall. Its
feet rest on the floor 1 m from
the wall as shown in Fig. Find
the reaction forces of the wall and

the floor.

The ladder AB
is 3 m long, its
foot A is at
distance AC =
1 m from the
wall. From
Pythagoras
theorem,

BC=2y2 m.
The forces on
the ladder are
its weight W
acting at its
centre of
gravity D, re-
action forces
F, and F, of
the wall and the floor respective-
ly. Force F, is perpendicular to
the wall, since the wall is fric-
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‘tionless. Force F, is resolved into



al re-
two components, the normal |
action N and the force of friction
F. Note that F prevents the lad-
der from slidin
wall ‘and is there

wards the wall. o
For translational equilibrium,

taking the forces in the vertical
direction,

N-=W=0 .ccomnenrincmnnnns (i)

Taking the forces in the horizon-
tal direction,

F=F, =0 oo (i)

For rotational equilibrium, taking
the moments of the forces about

fore directed to-

g away from the .

NowW=20¢g = _
N g 20*9.81\!-196.0

From (i) N = 196.0

From (iii) Fi = — =12
! 4ﬁ 4\/5 =346N
From (i) F = F, = 34.6 N

F, =VF? + N2 =199.0N

The force F, makes an angle 3
with the horizontal, B

N

F_.

A, , tahq_:—_tl\/f, a=tan"(4—ﬁ)rzso°

'7.10 MoumenT oF INERTIA |

Inertia is the inability of a body to change by itself its
state of rest or of uniform motion. This is the case with
~ translational motion.

In the case of a rotating body, it cannot change its .
state of rest or of uniform rotation about an axis by itself.
This inability is called rotational inertia or moment of
inertia.

Moment of inertia of a particle is measured as the
product of mass of the particle and square of its distance
from the axis of rotation. . | ' Fig. 15

Consider a particle of mass ‘m’ rotating about an axis |
O at a distance of r from it, its moment of inertia is given by, I = mr?

In the case of a rigid body, which is constituted of a number of particles
of masses m , m,, ........ , m_ at distances 1, r,, ...... , T, respectively from the
axis.

~

2 g . 2 I=Zm.r."
m;r +m,f, +....+m; Or i

Moment of inertia is given by, 1=

_ Inertia depends only on the mass of the body while moment. of inertia
depends on mass and distribution of the mass with respect to the axis of rota-
tion. It is a scalar quantity. ' ' .

Unit ‘ | ' '
In SI - kg m? CGS - gcm?

Dimensional formula : [ML?T]



