7.10.1 Physical Significance of Moment of Inertia

_ ACC;Ol'dI:lg tOfN‘?‘“ftOn’s first law, an external force is necessary to change
the state O l‘is or o l..lmfo-rfn motion of a body. Hence a body cannot change its
state by 1tse f. This inability of a body in linear motion is called inertia. A

massive bo.dy requires more force to produce linear acceleration. Hence mass
of a body is a measure of its inertia. : ‘

In th_e case _°f a rotating body, an external torque in required to produce
an acceleration on it. The inability of a rotating body to pfoduce any change in
its state is called rotational inertia or moment of inertia. Moment of inertia
depends not only the mass but _-als;o its distribution about the axis .‘oi:
rotation.Hence Moment of inertia in rotation plays the same role as mass-does
in linear motion. : oM

7.10.2 Radius of Gyration

Consider a rigid body rotating about an axis with masses m,, m,,
............. , m_ at distances 1, I, ......; T, respectively. Now, the moment of
inertia of the body is given by, '

= mr2+m,r +.tmyr; or 1= gme? =MK? ... (1)
where K is called the radius of gyration. |

Radius of gyration is the distance of the equivalent point where the whale
mass of the rotating body is assigned to a particle such that the moment of inertia of this
particle about any axis is same as the moment of inertia of the body about the same axis.

Radius of gyration can also be defined as the distance, whose square
- when multiplied by the whole mass gives the moment of inertia of the body.

7.11 THEOREMS OF PERPENDICULAR AND PARALLEL AxEs

In order to calculate the moment
of inertia of some regular shaped bod-
ies, two theorems are used.

i. Theorem of perpendicular axis

and : ;
ii. Theorem of parallel axes g

7.11.1 Theorem of Perpendicular | /0. Y
It states that, ‘the moment of in-
ertia of a plane lamina about an axis per-
~Pendicular to'its plane is equal to the sum Y
of moments of inertia about two mutually ' s |
perpendicular axes in its plane and int#r;— : }" 16 R
secting each other at the point where the: gueorem o fperpendi‘}:ula . 16 cabte « _
| perpendicular axis meets the lamina’. \ planar body; X and Y uxes are W0 Rerpendi(!ﬂ ar

axes in the plane and the Zoaxisis 1T 10 the plane -
\ : Ny ! . =




Let I and [ are moments of inertia of a plane lamina about twg muty,
ally perpendicular axes xx’' and yy’ on its surface.

Let 77’ be an axis perpendicular to XX'andYY’. O is the common Poing
of intersection of the three axcs.

The moment of inertia about zz' is; =L + L

7.11.2' Theorem of Parallel Axes

This theorem states that ‘the moment of inertia
ofabodyaboutanyanlsisemzaltothesumofﬂzemoment \

X X

of inertia about a parallel axis passing through the centre *G
of mass of the body and the product of the mass of the <o d
badyandthesqunreofﬂwdistarwebetweenﬂmeuwaxes’. |
Consider a body.of mass M. Let G be its cen- Y v
tre of mass. The MI of the body about any axis XY be ‘ I o
Fig. 17

1. Consider an axis X'y’ parallel to XY and passing

through G. Let I be the MI of the body about X'Y"". X and 3

Let ‘a’ be the separation between the axes. Now, ac- X'Y" axes are tiwo paralel
. _ _ o axes separated by a distance ‘a’. G

cording to the parallel axes thecorem I1=1_ + Ma? ... centre of of the

7.12 MowmenT oF INERTIA OF REGULAR SHAPED BoDIES

By applying parallel and perpendicular axes theorems, we can reach the
equations for moment of inertia of certain regular shaped bodies.

The theorem of parallel axes. The

7.12.1 Moment of inertia of a circular ring i

i. About an axis passing through the centre and
- perpendicular to its plane | |

‘ Consider a circular ring of mass M and radius
. R. AB be an axis passing through its centre O and R m
 perpendicular to its plane as shown in figure. '

Consider a particle of mass ‘m’on the ring. Since -
this particle is at a distance of R from the axis of
- rotation, its moment of inertia is mR?

.. Moment of inertia of the ring about AB, - B
I=:zmR® | A Fig. I8
ie., 1= MR?, where Sm = M, is the total mass of the ring.

ii. About any diameter .

The moment of inertia of the ring about any diame _ '
two mutually perpendicular diameters XX’ .and YY 01‘
z7' be an ax®
moment

ter is the same due 0

_ its symmetry. Consider
its plane. Let I, be the moment of inertia about any diameter.
passing through its centre and perpendicular to its plane. Let I be the
of inertia about ZZ'. : , " - , el -
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According to the perpendicular axes theo-
rem

MIabout zz’' = MI about XX’ + Ml’about YY’
ie., I=I+I, X

ie., 21, =1=MR?

_ 2
I::.b.-@_..

a2

Yl
| | Fig. 19
iii. About a tangent parallel to the diameter of the ring

Let AB be a tangent to the ring, parallel to the diameter XX’ of the ring
MR 2

MI about XX'-is I, = . According to

parallel axes theorem,
MI about AB = MI about xx' + MRz X

2
L= 2 4 MR?
2 .
3 A
Ly = 5 MR’

7.12.2 Moment of Inertia of a Circular Disc
i. About an axis passing through its centre and perpendicular to its plane

Consider a circular disc of mass M and radius -
R. AB be an axis passing through its centre O and
perpendicular to its plane. |

M
Mass per unit area of the disc = 7p7.

The disc is assumed to be made up of a number
of concentric rings whose radii varies from 0 to R.
Consider one such ring of radius x with thick-
ness dx. _ ' o | s

Area of the ring = 2nx.dx Fig. 21 '

— MM, ]
.. Mass of the ring = p2 21:3:' RZ 5
-, MI of the ring about AB = mass X (radius)? . :

M ‘ 2M
' =R ‘xdxj f:—* 'fﬁ'i" x“"cllx,

s R
.. I -. ’/‘ .-|r



ie., I=

ii. About any diameter

The moment of inertia of the disc about any
diameter is the same due to its symmetry. XX' and
YY' are two mutually perpendicular diameters of the

disc in its plane. Let I, be the moment of inertia about + X
any diameter. /
Moment of inertia of the disc about an axis pass-
ing through its centre and perpendicular to its plane
MR ? |
I=
2 '
According to the perpendicular axes theorem, I =1, + I,
: MR * MR?
ie., 21, = 3 I, = a
iii. About a tangent parallel to its diameter .
Let AB be a tangent to the disc par- '
allel to the diameter XX'. 6
Moment of inertia of the disc about . o N
any diameter T ;
MR® R
Id = . : '
¢ A ' B
According to parallgl axes theorem, Fig. 23
=1, + MR? = MR, MR?
L,=1, == *MR
5
Lo~ 7 MR?

7.12.3 Moment of Inertia of a (Uniform Rod

i. About an axis passing through its centre and perpendicular to its length

Consider a uniform rod AB of length [ and mass M. Let O be its C_entre'

yy' is an axis passing through’its centre and perpendicular to its length.
- .\\ . M
Since mass is uniformly distributed, mass/unit length of the rod = 7

. : | . . X
Now consider a small element of the rod of length dx at a distance of



from the axis. Y
Mass of this element = de o | d. |
4 - Ad z _‘l\*_ DB
. M Ok=x—
MI of this ¢lement about yy' = —dx.x’ /
! = 2
. P | Y’ ‘
. MI of the rod about YY", I = i%d-xzdx te. 34
7
%
= M“X 2 szdx \
l 0
I
2MP3 Z oM 1P
= —|—| = —x—x—
13, 138
_m2
12 :

to itslength

ii. About an axis passing through its one end and perpendicular
- P

Using parallel axes theorem, the moment Y
of inertia about PQ, ' ’

1Y | |
= [+M| - ‘ AT B
fro (2] o :?
' ]
[ = M12+M12_-M12 S 2
R12 4 3 -y Q
Fig. 25

7.12.4 Moment of Inertia of a Solid Cylinder

i.  About its own axis |
| Consider a solid cylinder of mass M

rotating about an axis AB passing .
through its centre and along its (UR _
L

and radius R. Let the cylinder be

length.
The ¢ylinder can be considered as

inati f discs. 5
the combination of a ?umber o R / _‘ Fig. 26
MI of one disc = _m_zli_ Hence MI of '
2 2 .
mR* MR ince Tm=M

— S —
?
2

~.
~

the cylinder, about AB is = =3



fi. About an axis passing through its centre and perpendicular ¢ jy, e

PQ be
AB, o

Consider a cylinder of mass M and radius R. Let [ be its length,
axis passing through its centre O and perpendicular to its own axig
Mass per unit length of the cylinder
Rl g
Suppose the solid cylinder is made
up of a number of circular discs of ra-
dius R. Consider one such disc of thick-
ness dx at a distance of x from PQ.

---------

am—

, @

‘The axis P'Q’ is passing through
the diameter of this disc.

Mass of the disc =

|
. Moment of inertia about P'Q’, lpy = 7 x mass * (Radius)?

1
o == X

. MR 2
. IPQ

=T.dx

-----

M
ic., ~dx'x R? (3)

Now, Moment of inertia about PQ can be found out by using parallel azes

Calculate the ratio of their mo-

perpendicular t0

theorem.
) .
‘M
ie., IPQ=lp'Q- + mass of the disc x x¥* = M:; . dx + T dx x x®
2 M
= -“%—- dx+ = 6 dx . (4)
. Moment of inertia of the cylinder about PQ,
! 1]
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Solved Examples g
| — .
9. A uniform ring and disc have the ments of inertia ﬁl.bot:,;es and
same radii 0.5 m and mass 10 kg. i ough their €&5==
r g passing thr gh ‘heir planes:



Sol.

Given, Mass of ring/disc, M = 10 | "
kg , radius of ring /disc, R=0.5m = 1.25 kgm? C
MI of ring about AB, I, = MR? . «. Ratio of their MI,
B
-=10x 05 =25kgm | L _25 _, _r
' I 12

. 2
MI of disc about AB, I, = M2R

= .

———

7.13 KINEMATICS OF RoTATIONAL MOTION Aaoﬁ'r\ A Fixep Axis

A rigid body is one in which the distance between
any two pair of particles remains constant.

Consider a rigid body capable to rotate about an
axis AB as shown in fig. 28. When a force is applied on
it, each particle of the body revolves on a circular path -
of radius equal to its distance from the axis. Now the
rigid body is in rotational motion and the physical quan-
tities needed for explaining its motion are angular dis-
placement 6, angular velocity o and angular accelera:
tion a.

. These quantities were related with the transla-
tional motion as,

x=r0 ; - v=rm; Aa=ra
Equations of Rotational Motion

© Just as the equations of translatory (linear) motion, we can derive equa-
tions of rotational motion. Here the angular acceleration of the rotating body is
taken as a constant.

a. Angular velocity after anj time

Consider a rigid body of mass m rotating about an axis with uniform
angular acceleration a. Let ®, be its initial angular velocity, After any time t,
let @, be its angular velocity. Now its angular acceleration, by definition

o=

.';(ol-_n)‘,:at; ®, =Wo + Ot eeeeee (1)

)
-

b. Angular displacement after any time

Let a rigid body capabie of rotation about an axis, revolves with a uniform
angular acceleration o . Let 0, be its initial angular velocity. -Aft‘pr-‘any time t,
let it has an angular displacement of 8, and its angular velocity becomes o, -

Angular displacement = Average angular ve'lo'city X ;timeb



But o, =0, + 0t
mﬂ+mn+atJ
- 2
AR P .
i.e., 0=0,t+ Eat .................. (2)

| c. Angular velocity after some angular displacement

Let a rigid body rotate about an axis with unfform angular accejer

o . Let @, be its initial angular veloc1ty After an angular dlsplacement
its angular velocity becomes o,

ation
0, let

Now from (1) equation, (o, -wy)=at ...... (1)

Also, Average angular velocity x time = angular displacément
AT T T PP 20

lc’[ 2 )t_e \ 01' (o, +(’)0)=—t— ......... (2)
Multiplying (1) and (2), we get

(mt +®, ) (o, —0)0)=—2tgxat

ie., 03,2 -0 =200
O =0f +200 © eveeeenn. 3)
d Kinetic energy of rotation \
Consider a rigid body, consisting of n partlcles executmg rotational

motion (See fig 28). The first particle of mass m, is at a distance r, from AB,

second particle of mass m, is at a distance I, from AB etc. Also the velocity of
first particle is v, that of second particle is v, etc.

]

Kinetic energy of first particle = %m,vf
- Kinetic éi_1érgy of 2™ particle = %mzvg

 Kinetic energy of nt' particle = —m_v

1 1 l
Total KE = oM Vi +§-m2v§ ........ +om v2

But v, =rw, v,=r0 etc. Substituting

. 1 2.2, 1 2 2 1
Total_KE of rotation = Em'r' 0 +-é—m2r2co Finiaen D S +—m_r,®

L= %mz[m|r|2+rﬁ2r22+._; _____ +m r2] — %(021 oy




TABLE 2

k1. No. 'Body - Axis . Ml Figure
I. | CircularRing . |a, Through its centre and MR? A A
perpendicular to its plane <’ 0 )
, MR? "
b. Aboutany diameter 2 @ )
c. About any tangent paral- 3 ; @ A
lel to the diameter 2 MR £
_ (c)
2. | Circular Disc a. Through its centre and MR ?
v perpendicular to its plane 2
b. Aboutanydiametsr o MR ?
4
_ c. Aboutany tangent paral- 5
: lel to the diameter EMRZ ,
3 ThinrRod a. Through its centre ang MI? ,
- . . f — : pﬂ _Jo
perpendiculartoitslength | 12 N
z : — / -
A | b. Through one end of the M2 | — '
rodand | "toits length ' 3
. |‘I . - 2 .
4. | Solid Sphere a. Aboutany diameter  ZIMR? B%
| . : ‘ 2 ] ‘
5. | HollowSphere(Shell) | a. Aboutany diameter MR | C o)
6. | Rectangularlamina|a. Through its centre and | M, ., | A
- gu ) : —(*+b%)
: perpendiculartoitsplane | 1 X
| ' ' M 2 2 |
. h one side S )
| b. Through one 3 7 [H“ |
- About the axi ! A
7. | Solidcylinder a. About the axis 2 MR? u__
| =t
b. About the centre and per- | M 24t 2 (Y Ay
pendicularto itsown axis | 4 3 I 5 J
Solved Examples
10. "The angular speed of a motor acceleration, assuming tl'_lfl’ )
wheel is increased from 1200 rpm acceleration to be umfgrr:s? t(llllé -
& ‘

How many revolutions

to 3120 rpm in 16 . seconds. | : M
P - engine make during this time?

() What 1is. its. angular



Sol.
i. We shall use o=, +at
w, = initial angular speed in rad/s
= 2n x angular speed in rev/s
2 x angular speed in rev/min
) 60s/min

21::«]200 - 40% rad/s
60

Similarly © = final angular speed
in rad/s
_ 2nx3120

60
= 104n rad/s

- Angular acceleration
w- 0.)0

= 2nx52

= 4nrad/s?
The angular acceleration of the
engine = 4nrad/s’
ii. The angular displacement in time
tis given by
9=c:o,,t+lozt2
2

a=

= (40nx16+%x4nx162] .

= (640w +512n) = 1152nrad

1152=n
21

Number of revolutions =

= 576
11. The angular speed of a motor wheel
is increased from 1200 rpm to 3120
rpm in 16 seconds.
i. What is its angular acceleration,

assuming the acceleration to be |

uniform?

'ii. How many revolutions does the

engine make during this time?
We shall use o=, +at
w, = initial angular speed in
rad/s =271 x angular speed. in
rev/s
_ 2n xangular speed in rev/mm
60 s/min

Sol.

_ 271 x 1200

=0 réd/s = 40n rad/s

Similarly 0w = final
speed in rad/s

_ 2nx3120 4 .
._‘6"0" -l'a s = Znux 52 radls

= 1047 rad/s

Angular
(ﬂ—mo
: 4n rad/s?
The angular acceleration of the
;ngme = 4n rad/s?
ii. The angular displacem i
time t is given by B

acceleratmn
¥
a=

|
0 = Wyt +—ous?
2

= (401tx16+%x4nx]62)md

= (640n+512n) rad = 1152n rad

Number of revolutions = 1152

= 576
12 An electron of mass 9 x 10 kg
revolves in a circle of radius
0.53 A° around the nucleus of hy-
drogen with a velocity of 2.2 x 10¢
ms™!. Show that its ahngular mo-

mentum is equal to 5, where h

is Planck’s constant.

Sol. |
Given,m = 9 .x 10%
r=0.53 A° =0.53 x 10m

v =22 x 10® ms”,
h=6.6 x 10%Js
L = mvr
=9 10 x 2.2 x 106 x 0.53 x 107
= 1.0494 x 10 Js — (1)
We: ha_ve ,
h 6.6x107
2n 2x3.14
From egns. (1) and (2), W€ get.

- h
T 2n

kg,

~1.0504x107 Js— (2)




