Classify the following species into Lewis acids and Lewis bases and show how these act as such:

(a) HO^{-} (b) F^{-} (c) H^{+} (d) BCl_{3}

Ans) (a) OH^- ion can donate an electron pair. Hence, it acts as Lewis base.

(b) F^- ion can donate an electron pair. Hence, it acts as Lewis base.

(c) H^+ ion can accept an electron pair. Hence, it acts as Lewis acid.

(d) *BCl*₃ ion can accept an electron pair. Hence, it acts as Lewis acid.

Calculate pH of a 1.0×10^{-8} M solution <u>of HCl.</u>

Ans)
$$[H+]$$
 total $= [H+]$ acid $+[H+]$ water

Since, HCl is a strong acid and is completely ionized $[H^+]HCl = 1.0 imes 10^{-8}$

The concentration of H+ from ionization is equal to the $[OH^-]$ from water, $[H^+]H_2O = [OH^-]H_2O$ $= x \ (say)$ $[H^+]total = 1.0 imes 10^{-8} + x$

```
But

[H^+][OH^-] = 1.0 \times 10^{-14}

(1.0 \times 10^{-8} + x)(x) = 1.0 \times 10^{-14}

X^2 + 10^{-8}x - 10^{-14} = 0
```

Solving for x, we get $x=9.5 imes10^{-8}$

Therefore, $[H^+] = 1.0 \times 10^{-8} + 9.5 \times 10^{-8}$ $= 10.5 \times 10^{-8}$ $= 1.05 \times 10^{-7}$ $pH = -log[H^+] = -log(1.05 \times 10^{-7}) = 6.98$

Hence, this is the answer.