6.2 INEQUALITIES

Let us consider the following statements in Table 1 and Table 2

Table 1	Table 2
2x+5=0	$5x+7 \leq 0$
5x + 6 = -2	-2x + 12 > 0
3x - 4y = 6	4x - 3y < -6
4x + 7y = 9	$5x+2 \ge 0$

Comparing Tables 1 and 2, we can see that all the statements in Table 1 contain the equality sign (=), and the statements in Table 2 contain inequality sign, called inequalities.

Definition

A statement involving variables and the sign of inequality $(<, \le, >, \ge, \ne)$ is called an inequality. If each term of an inequality is of first degree, then it is a linear inequality.

♦ Numerical inequalities: -3 < 3, 4 > 2, 5 > 0

• Literal inequalities: $x < 4, y > -5, x \le 3, y \ge 6$

	Strict inequalities		그가 아이에 다 아파는 것 같아요. 아이는 것	
	2x+5<1 $x-6>7$	}	linear inequalities in one variable	•
	6x + 2y < -5 3x - y > 8	}	linear inequalities in two variables	
-	$2x^{2} + 5x - 3 > 0$ $x^{2} - 2x + 5 < -3$ Slack inequalities	}	quadratic inequalities in one variable	
	$2x+5 \le 1$ x-6 \ge 7	}	linear inequalities in one variable	
	$6x + 2y \le -5$ $3x - y \ge 8$	}	linear inequalities in two varbiables	
,	$2x^2 + 5x - 3 \ge 0$ $x^2 - 2x + 5 \le -3$	}	quadratic inequalities in one variable	

6.3 ALGEBRAIC SOLUTIONS OF LINEAR INEQUALITIES IN ONE VARIABLE AND THEIR GRAPHICAL REPRESENTATION

Illustration 1

Consider the inequality x < 5, x is a real number.

x = 1,	1 < 5 is a true statement.	x=5,	5 < 5 is a false statement.
x=-1,	-1 < 5 is a true statement.	x = 7,	7 < 5 is a false statement.
x = 2.4,	2.4 < 5 is a true statement.	x = 5.2,	5.2 < 5 is a false statement.
x = 4,	4 < 5 is a true statement.	x = 10,	10 < 5 is a false statement.

We observe that the values of x less than 5 make the inequality a true statement and we call them as the solutions of the inequality. Hence the solution of the inequality is the interval $(-\infty, 5)$.

Definition:

The solution of an inequality in one variable is the value of the variable(s) that makes the inequality a true statement.

An inequality may or may not have a solution.
 If the inequality has a solution, then it may have infinitely many solutions.

	REMEMB	ER THE FO	LLOWING R	ULES	
Rule 1 : W	hen equal number	s are added to	or subtracted fro	om both sides o	if an inequ
	e sign of inequalit				
	or example, $-2 \cdot$				
Rule 2 : W	hen both sides of	an inequality	are multiplied	or divided by	same pos

iality.

Rule 2: When both sides of an inequality are multiplied or divided by same positive number, the sign inequality is not changed. For example, -5 < 9, then -5(3) < 9(3)
Rule 3: When both sides of an inequality are multiplied or divided by the same negative number, the sign of the inequality is reversed. For example, -5 < 9, then -5(-3) > 9(-3)

Illustration 2

Let us solve the inequality 5x - 3 < 3x + 1, when x is an integer.

The inequality is 5x - 3 < 3x + 1Adding 3 to both sides, we get 5x - 3 + 3 < 3x + 1 + 3 5x < 3x + 4Subtracting 3x from both sides, we get $5x - 3x < 3x + 4 - 3x \implies 2x < 4$ Dividing both sides by 2, we get x < 2Divide by the coefficient of the variable

The inequality becomes a true statement when x takes integer values less than 2. Hence the solution is 1, 0, -1, -2, ...

The solution can be represented on a number line as shown in Fig 6.1