1. Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect? Why?

Ans) Fig. (a) is incorrect. According to equation of continuity, i.e., av =
Constant, where area of crosssection of tube is less, the velcoity of liquid flow is more. So the velocity of liquid flow at a constriction of tube is more than the other portion of tube.

Accroding to Bernoulli's Theorem,

 $P+rac{1}{2}
ho v^2$ = Constant,

where *v* is more, *P* is less and vice versa.

2.In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the upper and lower surfaces of the wing are 70 m/s and 63m/s respectively. What is the lift on the wing if its area is $2.5 m^2$? Take the density of air to be $1.3 \text{ kg/}m^3$

Ans) Speed of wind on the upper surface of the wing, $V_1=70\,m/s$

Speed of wind on the lower surface of the wing, $V_2=63\,m/s$ Area of the wing, $A=2.5\,m^2$ Densityof air, $ho=1.3\,kg/m^3$

According to Bernoullis theorem, we have the relation:

$$P1 + (1/2)\rho(V_1^2) = P2 + (1/2)\rho(V_2^2)$$

$$P2-P1=(1/2)\rho(V_1^2-V_2^2)$$

Where, P1 = Pressure on the upper surface of the wing P2 = Pressure on the lower surface of the wing

The pressure difference between the upper and lower surfaces of the wing provides lift to the aeroplane.

Lift on the wing =(P2-P1)A

$$= (1/2)\rho(V_1^2 - V_2^2)A$$

$$= (1/2)1.3[70^2 - 63^2]2.5$$
$$= 1512.87$$

$$N=1.51\times 10^3~N$$

Therefore, the lift on the wing of the aeroplane is $1.51 imes 10^3~N$.