$\mathbb Q$ A uniform capillary tube of inner radius r is dipped vertically into a beaker filled with water. The water rises to a height h in the capillary tube above the water surface in the beaker. The surface tension of water is σ . The angle of contact between water and the wall of the capillary tube is θ . Ignore the mass of water in the meniscus. Which of the following statements is (are) true?

For a given material of the capillary tube, h decreases with increase in r

If this experiment is performed in a lift going up with a constant acceleration, then *h* decreases.

For a given material of the capillary tube, h decreases with increase in r

SOLUTION

$$rac{2\sigma}{R}=
ho gh$$
 $[R
ightarrow$ Radius of meniscus]

$$h=rac{2\sigma}{R
ho g}$$
 $R=rac{r}{\cos heta}$ $[r
ightarrow$ radius of capillary; $heta
ightarrow$ contact

radius of capillary; heta o contact angle]

$$h=rac{2\sigma\cos heta}{r
ho g}$$

(A) For given material, heta o constant

$$h \propto rac{1}{r}$$

B If this experiment is performed in a lift going up with a constant acceleration, then h decreases.

SOLUTION

$$rac{2\sigma}{R}=
ho g h$$
 [$R o$ Radius of

meniscus]

$$h=rac{2\sigma}{R
ho g}\quad R=rac{r}{\cos heta}\quad [r
ightarrow$$

radius of capillary; heta o contact angle]

$$h=rac{2\sigma\cos heta}{r
ho g}$$

(A) For given material, heta o constant $h \propto rac{1}{r}$

(B) If lift is going up with constant acceleration,

$$g_{eff} = (g+a)$$