

Total No. of Questions – 24 Total No. of Printed Pages – 4

Part - III

MATHEMATICS, Paper - I (A)

(English Version)

Time : 3 Hours]

[Max. Marks: 75

Note: This question paper consists of three Sections - A, B and C.

SECTION - A

 $10\times 2 = 20$

- I. Very Short Answer Type questions :
 - (i) Answer all the questions.
 - (ii) Each question carries two marks.

1. If
$$f(x) = 2x - 1$$
, $g(x) = \frac{x+1}{2}$ then find (gof) (x).

2. If $f = \{(1, 2), (2, -3), (3, -1)\}$ then find (i) 2f (ii) f^2 .

- 3. Find the trace of the matrix $A = \begin{bmatrix} 1 & 3 & -5 \\ 2 & -1 & 5 \\ 2 & 0 & 1 \end{bmatrix}$.
- 4. Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$.
- 5. If $\overline{a} = 2\overline{i} + 5\overline{j} + \overline{k}$ and $\overline{b} = 4\overline{i} + m\overline{j} + n\overline{k}$ are collinear vectors then find m, n.

[1 of 4]

166

- 6. Find the vector equation of the plane passing through the points (0, 0, 0), (0, 5, 0) and (2, 0, 1).
- 7. Find the angle between the planes $\overline{\mathbf{r}} \cdot (2\overline{\mathbf{i}} \overline{\mathbf{j}} + 2\overline{\mathbf{k}}) = 3$ and $\overline{\mathbf{r}} \cdot (3\overline{\mathbf{i}} + 6\overline{\mathbf{j}} + \overline{\mathbf{k}}) = 4$.
- 8. If $\tan 20^\circ = \lambda$ then show that $\frac{\tan 160^\circ \tan 110^\circ}{1 + \tan 160^\circ \tan 110^\circ} = \frac{1 \lambda^2}{2\lambda}$.
- 9. Find the range of $7 \cos x 24 \sin x + 5$.
- 10. Prove that $(\cosh x \sinh x)^n = \cosh(nx) \sinh(nx)$.

SECTION - B

 $5 \times 4 = 20$

- II. Short Answer Type questions :
 - (i) Answer any five questions.
 - (ii) Each question carries four marks.

11. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ then show that AA' = A'A = I.

12. If the points whose position vectors are $3\overline{i} - 2\overline{j} - \overline{k}$, $2\overline{i} + 3\overline{j} - 4\overline{k}$, $-\overline{i} + \overline{j} + 2\overline{k}$ and $4\overline{i} + 5\overline{j} + \lambda\overline{k}$ are coplanar then show that $\lambda = \frac{-146}{17}$.

- 13. Find the vector area and area of the parallelogram having $\overline{a} = \overline{i} + 2\overline{j} \overline{k}$ and $\overline{b} = 2\overline{i} - \overline{j} + 2\overline{k}$ as adjacent sides.
- 14. Prove that $\sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \frac{3}{2}$.
- 15. Solve $7\sin^2\theta + 3\cos^2\theta = 4$:

[2 of 4]

166

- 16. Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$.
- 17. If $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are in A.P. then prove that a, b, c are in A.P.

SECTION - C

 $5 \times 7 = 35$

III. Long Answer Type questions :

- (i) Answer any five questions.
- (ii) Each question carries seven marks.
- 18. (a) If $f(x) = \frac{x+1}{x-1}$, $(x \neq \pm 1)$ then find (fofof) (x).
 - (b) If $f : A \to B$, $g : B \to C$, $h : C \to D$ are functions then show that ho(gof) = (hog)of.
- Show that 49ⁿ + 16n 1 is divisible by 64 for all positive integers by using Mathematical induction.

20. Show that $\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^3.$

- 21. Solve the equations using Cramer's Rule x + y + z = 1, 2x + 2y + 3z = 6, x + 4y + 9z = 3.
- 22. Find the shortest distance between the skew lines

 $\overline{\mathbf{r}} = (6\overline{\mathbf{i}} + 2\overline{\mathbf{j}} + 2\overline{\mathbf{k}}) + \mathbf{t} \ (\overline{\mathbf{i}} - 2\overline{\mathbf{j}} + 2\overline{\mathbf{k}}),$ and $\overline{\mathbf{r}} = (-4\overline{\mathbf{i}} - \overline{\mathbf{k}}) + \mathbf{s} \ (3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}}).$

[3 of 4]

166

- 23. If A + B + C = $\frac{\pi}{2}$ then prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C.
- 24. Prove that $r + r_3 + r_1 r_2 = 4R \cos B$.