Experiment No:

Date:

Potentiometer I

<u>Aim:</u>

To compare the emf's of two primary cells using Potentiometer

Apparatus:

Potentiometer, Accumulator, Daniel Cell, Leclanche Cell, Rheostat, Key, Jockey, Connecting wires etc.

Theory:

Observations:

When a steady current flows through a resistance wire, the potential difference developed in the wire is directly proportional to the length of the wire,

If E_1 and E_2 are the emf's of a Daniel Cell ans Leclanche Cell and l_1 and l_2 are their respective balancing lengths, then

 $\mathbf{E}_1 \, \pmb{\alpha} \, \pmb{l}_1$ and $\mathbf{E}_2 \, \pmb{\alpha} \, \, \pmb{l}_2$

that is
$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$

<u>observations</u>			
Sl No	Balancing Length for (cm)		$\underline{E_1}_\underline{l_1}$
	Daniel Cell (E1)	Leclanche Cell	$E_2 l_2$
1			
2			
3			
4			
5			
6			
7			

The Ratio of emf's =

<u>Result:</u>

The Ratio of emf's =