14.3 SmvpLE Harmonic MOTION (SHM)

| A particle is said to execute SHM if its
acceleration is proportional to displacement ;\ >

and is always directed towards a fixed point. B *

- > .
The blo‘ck attached to the spring A purticle vibrating back and forth aboy, .,
(see fig. 2(b)) is assumed as a particle of origin of X-uxis, between the limits +4 tmd_f,

mass ‘m’. During its back and forth mo- Fig. 3
tion along the x-axis, the turning points —A 0 +A
are at +A - igi ' |

and — A w.r.to the origin O as t;_—(]——; — —

shown in fig.3. The speed is zero at the

turning points and maximum at origin. : e —
ThiS . . 5 . . =T/4 ! _47 T ——__!'_'
1S 1s a s_pec1al type of periodic motion. ———O— !
T_he positions are now plotted against * — o f :
tllxine. At equal intervals we get the graph = t=T/2 —Q— : T
shown in Fig. 4. ' '
g = L . — —O0—Pr; —
. The variationt shown in fig.5 is =3T/4— S T
identical with the cosine curve. There- = 1 ‘ I ﬁo_*___lu
fore the displacement can be taken =T —1 : ——0-
as x(t)=Acoswt or more gencrally ! f G—O- = .’
Vv
x(t) = A cOS(Ot + ) cenveernnnenn. (1) in which A, (=5T/4 — ——9— l
® and ¢ are constants. | — 0 A

Instantaneous displacement related

with other quantities is shown in fig. 6.

The type of motion represented in
fig.(4) is called SHM (Simple Harmonic

e

Displacement —»
>
n

Motion). It is a periodic motion expressed 0

by a harmonic function of time. The quan- \/ \/
tity *A’ is called the amplitude of the mo- e AR

tion. Maximum and minimum values of Fig. 5

coswt are *=1and corresponding x(t) has

values A (at extreme positions). : Phase
For two arbitrary amplitudes, the Cx) = A costat  + @)
graph looks like fig. 7(a). The quan- N A e 0

tity wt+ ¢ is known as phase of the Displacement Amplitude ~ Angular  Phase

motion. It gives the state or condi- frequency constant
tions of motion at a given instant. ‘ Fig. 6

“¢’ is called phase constant (or
0). The value of ¢ depends on the displacement

phase angle or epoch at t = .
and velocity of the particle at t = 0. The variations of the periodic motion ‘wzth
n

—_—

different ¢ values typical, are shown in fig. 7(b). The angular frequency @~

and its unit is rad s~ .
Fig. 8 illustrates the significance of period T.

e, SHM represented by curve ‘@’ has a period T and that

In this figur
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represented by curve ‘b’ has a period T’=%, .

solvet Examples

ﬁhTEh of the following functions of
time represents (a) simple har-
monic motion and (b) periodic but
not simple harmonic? Give the pe-
riod for each case.
1. sin®t—cosmt ii. sin? ot
Sol. '

a. sinwt—cosot

) .| T
= smmt—sm[——mt}
2
= 2.cos E sin O)t—-‘E]
4 4

= J2sin mt——}}

This function represents a simple

harmonic motion having a period

‘ T
T=2" and a phase angle (—Z] or
®
4 . ) \
b. .sin® ot

l—-l-cos.Zcot
2 2

The function is periodic having

T

a T==
®

represents a harmonic motion

with the point of equilibrium

It

period also

. 1.
occurring at 5 instead of zero.

14.4 SmpLe Harmonic MoTioN AND UniForM CIrRcuLAR MoTION

Galileo in 1610 studied the motion of the moons of Jupiter. According to

‘him, the motion is back and forth about Jupiter as origin (This means SH

M).

We now know that Callisto, one of Jupiter’s moons move in cj i

: _ rcl i
speed. This concludes that Galileo observed the projected motioj z?t}}ll uniform
of Jupiter. the moons '



Fig. 9 shows the uniform circular
p“loﬁon of a particle ‘P’ with angular veloc-
ity ‘m . The circle of radius (A say) is called
reference circle. At any instant the posi-

tion is projected on the X- axis. P’ is the
position. From figure, x(t)=Acosot+¢. The
motion of p' on X-axis is synchronized with
the motion of P on the reference circle.
Hence, SHM is the projection of uniform
circular motion on the diameter (actu-

ally on any diameter) of the reference
circle.

Solved Examples

Fig. 9

S. The figure depicts two circular
motions. The radius of the circle,
the period of revolution, the ini-
tial position and the sense of
revolution are indicated on the
figures. Obtain the simple har-
monic motions of the x-projec-
tion of the radius vector of the

rotating particle P in each case.
' .
: : P(=0)

Sol.
a. At t = 0, OP makes an angle of 45°

s . . .
= zrad with the (positive dlrectlca:l
of) x-axis. After time t, it covers

' 2r . : :
angle _'T“_t in the anticlockwise

sense, and makes an angle of

2
—,r£t+§ with the x-axis.
The projection of OP on the

x-axis at time t is given by

x(t)= Acos(z—ﬂ:t + E—)
T 4

——

For T = 4S

4
of amplitude A, period 4s, and an

t—A 2n, W L
x(t)=Acos — '+ ) which is a SHM

initial phase = 1
In this case at £t = 0, OP makes-an -

: s .
angle of 90° = > with the

x-axis. After a time t, it covers an
2T . ) .
angle of —TT’C in the clockwise sense

T 2r
and makes an angle of (E—Tt)

with the x-axis. The projection of OP
on the x-axis at time t is given by

x(t)= Bcos(—’—r-—zzt—t
2 T

= Bsin(z‘—’f t)
T

For T = 30s, x(t)= Bsin(l—z—t)

15 2
and comparing with eq. (1), we find
that this represents a SHM of
amplitude B, period 30 s and an

Writing this as x(t)= Bcos[ir-t —E]

initial phase of —%.



-LOCITY AND ACCE
45 VEL LERATION IN SimpLE Harmownic MoTION

The function x(1)=Acosmt is continuous and finite at any time (t). There-

Jocity, acceleration and fi : :
_{he V€ Y : ASHY orce arc variable in nature; that also in
fore nilﬂdc and dircction within periodic time itself ,

ﬂ‘]ﬂg Vclocit_y at any time ‘t., iS
Y

d :
vit) = —(—i-l—.\(t) = —Awsinot+¢ ... (2) ?,m/\ s
t+G
- —Am\[l—coszmt+¢ \\
‘. P
x2 2 .
.= — Ao l—-—i_ = _mm (ﬁ['?‘(;)
A ~—] .
O vty P’ ‘

or v= (D‘\j A2 - x2 (numerically)

Wwhen x = 0, velocity is maximum,
" A . This is at mean position. When
L= A, e, at extreme position velocity is
minimum and itis v_; = 0.

This figure (Fig. 10), compared with Fig. 12
fig. 9, shows the velocity of P, shown by the tangent through P, its value 1is

v=mA . The projected value is v(t)=—wAsinot+¢ ........ (3) as is seen from fig-
ure. ’I“he —ve sign 1s due to the component directed towards left, in the negative
direction of x-axis. (3) is the instantaneous velocity.

Acceleration

A(;celeration being derivative of velocity, acceleration a(t) = %V(t) ...... (4)

d 5
= ——Aosinot+¢ . =
-dt

_Aolcosot+§ = —o’x
' This acceleration expression shows
that '
i. acceleration < displacement
ii. always against displacement. The
two conditions of SHM. ot
tion of acceleration of

The projec
P on x-axis is a(t)=—0 Acosot+¢
=—w’x(1)
At extreme position,, acceleration
is maximum 2y, = +@’A T
. Fig. 11

o x()=FA and at mean position



itisa__ =0, wx(1)=0
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Fig. 12

Time period (T) o
Time period is defined as the time taken by the particle executlng SHM to com

plete one vibration.
Acceleratlon a=mx (neglectmg the negative sign)

a
O=,—
x
Time period, T=_2£=2nx ! = 27 1
. ® @) ()
T=2n - ']_ _ .
acceleration/unit displacement

11 Acceleration
Frequency, v=r— -
T 21t Displacement



