4.5 VELOCITY AND ACCELERATION IN SmrLE HARMONIC MoTION
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the function x(1)=Acosot is continuous and finite at any time (t). There-
e velocity, acceleration and force are variable in naturc; that also in
jor® Eﬂimde and direction within periodic time itself.
755 elocity at any time ¢’ is
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or v=avAZ—x’ (numerically)

Wwhen x = 0, velocity is maximum,
e = Am This is at mean _position_ When
£= A, ie., at extreme position velocity is
minimum and itisv__ = 0.

This figure (Fig. 10), compared with .
fg. 9, shows the velocity of P, shown by the tangent through P, its value 1s
+—oA . The projected value is v()=-wAsinot+¢ ........ (3} as is seen from fig-
are. The —ve sign is due to the component directed towards left, in the negative
direction of x-axis. (3] is the instantaneous velocity.

Fig. 10

Acceleration

Acceleration being derivative of velocity, acceleration a(t) = v ...... (4)

d ,
= ——Aosinot+§¢ ) -
= -dt

o<
!

_Ao’cosot+d = —@’x

This acceleration expression shows
that

i. acceleration = displacement

ii. always against displacement. The -
two conditions of SHM.

The projection of acceleration of

P on x-axis is a(t)=—o Acosot +¢

=— o x(1)

At extreme position,, acceleration

is maximum a_.. = +o’A Fie
- 1g. 11
x(t):?A and at mean position 8



itisa . =0, vx(t)=0

{->  a. Displacement x(t) - time (t) graph
v
E 0 t=> - b. Velocity v(t) - time (t) graph
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i Fig. 12
Time period (T) e
Time period is defined as the time taken by the particle executmg SHM to com-

plete one vibration. ,
Acceleration, a=o0’x (neglectlng the negative sign)
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Time peﬁod, T=2=2nx. ! = 2n (},)
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acceleration/unit displacement
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