14.5 VELOCITY AND ACCELERATION IN SIMPLE HARMONIC MOTION

The function $x(t) = A\cos\omega t$ is continuous and finite at any time (t). Therethe velocity, acceleration and force are variable in nature; that also in fore interest and direction within periodic time itself.

Velocity at any time 't' is

$$v(t) = \frac{d}{dt}x(t) = -A\omega\sin\overline{\omega t + \phi} \qquad (2)$$
$$= -A\omega\sqrt{1 - \cos^2\overline{\omega t + \phi}}$$
$$= -A\omega\sqrt{1 - \frac{x^2}{A^2}} = -\omega\sqrt{A^2 - x^2}$$

or
$$v = \omega \sqrt{A^2 - x^2}$$
 (numerically)

When x = 0, velocity is maximum, = A\o. This is at mean position. When x = A, i.e., at extreme position velocity is minimum and it is $v_{min} = 0$.

×ωA ont+6 v(t)Fig. 10

This figure (Fig. 10), compared with fig. 9, shows the velocity of P, shown by the tangent through P, its value is $v=\omega A$. The projected value is $v(t)=-\omega A\sin \omega t+\phi$ (3) as is seen from figure. The -ve sign is due to the component directed towards left, in the negative direction of x-axis. (3) is the instantaneous velocity.

Acceleration

Acceleration being derivative of velocity, acceleration $a(t) = \frac{d}{dt}v(t)$ (4)

$$= \frac{d}{dt} - A\omega \sin \overline{\omega t + \phi}$$

$$-A\omega^2\cos\overline{\omega t + \phi} = -\omega^2 x$$

This acceleration expression shows that

- acceleration & displacement i.
- ii. always against displacement. The two conditions of SHM.

The projection of acceleration of P on x-axis is $a(t) = -\omega^2 A \cos \overline{\omega t + \phi}$ $=-\omega^2x(t)$

At extreme position, acceleration is maximum $a_{max} = \pm \omega^2 A$ $x(t) = \pm A$ and at mean position

Fig. 11

it is $a_{min} = 0$, x(t) = 0

- a. Displacement x(t) time (t) graph
- b. Velocity v(t) time (t) graph
- c. Acceleration a(t) time (t) graph

Fig. 12

Time period (T)

Time period is defined as the time taken by the particle executing SHM to complete one vibration.

Acceleration, $a = \omega^2 x$ (neglecting the negative sign)

$$\omega = \sqrt{\frac{a}{x}}$$

Time period,
$$T = \frac{2\pi}{\omega} = 2\pi \times \frac{1}{\sqrt{(\frac{a}{x})}} = 2\pi \sqrt{\frac{1}{(\frac{a}{x})}}$$

$$T = 2\pi \sqrt{\frac{1}{\text{acceleration/unit displacement}}}$$

Frequency,
$$v = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{\text{Acceleration}}{\text{Displacement}}}$$