कोड नं. Code No. 65/1

रोल नं. Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 29 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains **12** printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **29** questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे Time allowed : 3 hours 65/1 अधिकतम अंक : 100 Maximum Marks : 100 P.T.O. सामान्य निर्देशः

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न-पत्र में 29 प्रश्न हैं जो चार खण्डों में विभाजित हैं : अ, ब, स तथा द । खण्ड अ में 4 प्रश्न हैं जिनमें से प्रत्येक एक अंक का है । खण्ड ब में 8 प्रश्न हैं जिनमें से प्रत्येक दो अंक का है । खण्ड स में 11 प्रश्न हैं जिनमें से प्रत्येक चार अंक का है । खण्ड द में 6 प्रश्न हैं जिनमें से प्रत्येक छ: अंक का है ।
- (iii) खण्ड अ में सभी प्रश्नों के उत्तर एक शब्द, एक वाक्य अथवा प्रश्न की आवश्यकतानुसार दिए जा सकते हैं।
- (iv) पूर्ण प्रश्न-पत्र में विकल्प नहीं हैं । फिर भी चार अंकों वाले 3 प्रश्नों में तथा छः अंकों वाले
 3 प्रश्नों में आन्तरिक विकल्प है । ऐसे सभी प्रश्नों में से आपको एक ही विकल्प हल करना
 है ।
- (v) कैलकुलेटर के प्रयोग की अनुमति नहीं है । यदि आवश्यक हो, तो आप लघुगणकीय सारणियाँ
 माँग सकते हैं ।

General Instructions :

- (i) **All** questions are compulsory.
- (ii) The question paper consists of 29 questions divided into four sections A, B, C and D. Section A comprises of 4 questions of one mark each, Section B comprises of 8 questions of two marks each, Section C comprises of 11 questions of four marks each and Section D comprises of 6 questions of six marks each.
- (iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided in 3 questions of four marks each and 3 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted. You may ask for logarithmic tables, if required.

खण्ड अ

SECTION A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है । Question numbers 1 to 4 carry 1 mark each.

1. $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ का मान ज्ञात कीजिए | Find the value of $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$.

2. यदि आव्यूह $A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ विषम सममित है, तो 'a' तथा 'b' के मान ज्ञात कीजिए।

If the matrix
$$A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$$
 is skew symmetric, find the values of 'a' and 'b'.

3. दो सदिशों
$$\overrightarrow{a}$$
 तथा \overrightarrow{b} , जिनके परिमाण समान हैं, में से प्रत्येक का परिमाण ज्ञात कीजिए,
जबकि उनके बीच का कोण 60° है तथा उनका अदिश गुणनफल $\frac{9}{2}$ है।
Find the magnitude of each of the two vectors \overrightarrow{a} and \overrightarrow{b} , having the
same magnitude such that the angle between them is 60° and their scalar
product is $\frac{9}{2}$.

4. यदि a * b, 'a' तथा 'b' में से बड़ी संख्या को दर्शाता है तथा यदि a o b = (a * b) + 3 है, तो (5) o (10) का मान लिखिए, जहाँ * तथा o द्विआधारी संक्रियाएँ हैं ।
If a * b denotes the larger of 'a' and 'b' and if a o b = (a * b) + 3, then write the value of (5) o (10), where * and o are binary operations.

खण्ड ब

SECTION B

प्रश्न संख्या 5 से 12 तक प्रत्येक प्रश्न के 2 अंक हैं । Question numbers 5 to 12 carry 2 marks each.

5. Rt a for the formula $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ Prove that : $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

6. दिया गया है कि $A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$ है, तो A^{-1} ज्ञात कीजिए तथा दर्शाइए कि $2A^{-1} = 9I - A.$ Given $A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$, compute A^{-1} and show that $2A^{-1} = 9I - A.$

7.
$$\tan^{-1}\left(\frac{1+\cos x}{\sin x}\right)$$
 का x के सापेक्ष अवकलन कीजिए ।
Differentiate $\tan^{-1}\left(\frac{1+\cos x}{\sin x}\right)$ with respect to x.

8. किसी वस्तु की x इकाइयों के उत्पादन से सम्बन्धित कुल लागत C(x), $C(x) = 0.005x^3 - 0.02x^2 + 30x + 5000$ से प्रदत्त है । सीमांत लागत ज्ञात कीजिए जबकि 3 इकाई उत्पादित की जाती हैं, जहाँ सीमांत लागत (marginal cost) से अभिप्राय है उत्पादन के किसी स्तर पर संपूर्ण लागत में तात्कालिक परिवर्तन की दर । The total cost C(x) associated with the production of x units of an item is given by $C(x) = 0.005x^3 - 0.02x^2 + 30x + 5000$. Find the marginal cost when 3 units are produced, where by marginal cost we mean the instantaneous rate of change of total cost at any level of output. 9. मूल्यांकन कीजिए :

$$\int \frac{\cos 2x + 2\sin^2 x}{\cos^2 x} \, dx$$

Evaluate :

$$\int \frac{\cos 2x + 2\sin^2 x}{\cos^2 x} \, dx$$

10. वक्र कुल $y = a e^{bx+5}$ को निरूपित करने वाला एक अवकल समीकरण ज्ञात कीजिए, जहाँ a तथा b स्वेच्छ अचर हैं ।

Find the differential equation representing the family of curves $y = a e^{bx+5}$, where a and b are arbitrary constants.

11. यदि दो सदिशों $\hat{i} = 2\hat{j} + 3\hat{k}$ तथा $3\hat{i} = 2\hat{j} + \hat{k}$ के बीच का कोण θ है, तो sin θ ज्ञात कीजिए ।

If θ is the angle between two vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$, find sin θ .

12. एक काला तथा एक लाल पासा एक साथ उछाले जाते हैं । पासों पर आने वाली संख्याओं का योगफल 8 आने की सप्रतिबंध प्रायिकता ज्ञात कीजिए, दिया गया है कि लाल पासे पर आने वाली संख्या 4 से कम है ।

A black and a red die are rolled together. Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

खण्ड स

SECTION C

प्रश्न संख्या 13 से 23 तक प्रत्येक प्रश्न के 4 अंक हैं । Question numbers 13 to 23 carry 4 marks each.

13. सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए कि

$$\begin{vmatrix} 1 & 1 & 1 + 3x \\ 1 + 3y & 1 & 1 \\ 1 & 1 + 3z & 1 \end{vmatrix} = 9 (3xyz + xy + yz + zx)$$

Using properties of determinants, prove that

$$\begin{vmatrix} 1 & 1 & 1 + 3x \\ 1 + 3y & 1 & 1 \\ 1 & 1 + 3z & 1 \end{vmatrix} = 9 (3xyz + xy + yz + zx)$$

14. यदि
$$(x^2 + y^2)^2 = xy$$
 है, तो $\frac{dy}{dx}$ ज्ञात कीजिए ।

अथवा

यदि $x = a (2\theta - \sin 2\theta)$ तथा $y = a (1 - \cos 2\theta)$ है, तो $\frac{dy}{dx}$ ज्ञात कीजिए जबकि $\theta = \frac{\pi}{3}$ है | If $(x^2 + y^2)^2 = xy$, find $\frac{dy}{dx}$. OR

If $x = a (2\theta - \sin 2\theta)$ and $y = a (1 - \cos 2\theta)$, find $\frac{dy}{dx}$ when $\theta = \frac{\pi}{3}$.

15. यदि
$$y = \sin(\sin x)$$
 है, तो सिद्ध कीजिए कि $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$.
If $y = \sin(\sin x)$, prove that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$.

16. वक्र
$$16x^2 + 9y^2 = 145$$
 के बिन्दु (x_1, y_1) पर स्पर्श-रेखा तथा अभिलंब के समीकरण ज्ञात
कीजिए, जहाँ $x_1 = 2$ तथा $y_1 > 0$ है ।

अथवा

वह अंतराल ज्ञात कीजिए जिन पर फलन $f(x) = \frac{x^4}{4} - x^3 - 5x^2 + 24x + 12$ (अ) निरंतर वर्धमान है, (ब) निरंतर हासमान है । Find the equations of the tangent and the normal, to the curve $16x^2 + 9y^2 = 145$ at the point (x_1, y_1) , where $x_1 = 2$ and $y_1 > 0$.

OR

Find the intervals in which the function $f(x) = \frac{x^4}{4} - x^3 - 5x^2 + 24x + 12$ is (a) strictly increasing, (b) strictly decreasing.

- 17. एक वर्गाकार आधार व ऊर्ध्वाधर दीवारों वाली ऊपर से खुली एक टंकी को धातु की चादर से बनाया जाना है ताकि वह एक दिए गए पानी की मात्रा को जमा रख सके । दर्शाइए कि टंकी को बनाने का व्यय न्यूनतम होगा जबकि टंकी की गहराई उसकी चौड़ाई की आधी हो । यदि इस पानी को पास में रहने वाले कम आय वाले लोगों के परिवारों को उपलब्ध कराना हो तथा उसके बनाने का व्यय इन्हीं परिवारों को देना हो, तो इस प्रश्न में क्या मूल्य दर्शाया गया है ? An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when depth of the tank is half of its width. If the cost is to be borne by nearby settled lower income families, for whom water will be provided, what kind of value is hidden in this question ?
- 18. ज्ञात कीजिए :

$$\int \frac{2\cos x}{(1-\sin x)(1+\sin^2 x)} \, dx$$

Find :

$$\int \frac{2\cos x}{(1-\sin x)(1+\sin^2 x)} \, dx$$

19. अवकल समीकरण $e^x \tan y \, dx + (2 - e^x) \sec^2 y \, dy = 0$ का विशिष्ट हल ज्ञात कीजिए, दिया गया है कि $y = \frac{\pi}{4}$ जब x = 0 है ।

अथवा

अवकल समीकरण $\frac{dy}{dx}$ + 2y tan x = sin x का विशिष्ट हल ज्ञात कीजिए, दिया गया है कि y = 0 जब x = $\frac{\pi}{3}$ है । Find the particular solution of the differential equation $e^{x} \tan y \, dx + (2 - e^{x}) \sec^{2} y \, dy = 0$, given that $y = \frac{\pi}{4}$ when x = 0.

OR

Find the particular solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$, given that y = 0 when $x = \frac{\pi}{3}$.

20.
$$\text{HIPTI} \overrightarrow{a} = 4\overrightarrow{i} + 5\overrightarrow{j} - \cancel{k}, \overrightarrow{b} = \overrightarrow{i} - 4\overrightarrow{j} + 5\cancel{k} \text{ avi } \overrightarrow{c} = 3\overrightarrow{i} + \cancel{j} - \cancel{k} \overrightarrow{k} \text{ lyptical}$$

 $\text{HQL} \overrightarrow{a} = 4\overrightarrow{i} + 5\overrightarrow{j} - \cancel{k}, \overrightarrow{b} = \overrightarrow{i} - 4\overrightarrow{j} + 5\cancel{k} \text{ avi } \overrightarrow{d} \cdot \overrightarrow{a} = 21 \overrightarrow{k} \text{ l}$
 $\text{Let } \overrightarrow{a} = 4\overrightarrow{i} + 5\overrightarrow{j} - \cancel{k}, \overrightarrow{b} = \overrightarrow{i} - 4\overrightarrow{j} + 5\cancel{k} \text{ and } \overrightarrow{c} = 3\overrightarrow{i} + \cancel{j} - \cancel{k}.$ Find a vector \overrightarrow{d} which is perpendicular to both \overrightarrow{c} and \overrightarrow{b} and $\overrightarrow{d} \cdot \overrightarrow{a} = 21.$

21. रेखाओं
$$\overrightarrow{r} = (4\hat{i} - \hat{j}) + \lambda(\hat{i} + 2\hat{j} - 3\hat{k})$$
तथा $\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(2\hat{i} + 4\hat{j} - 5\hat{k})$
के बीच न्यूनतम दूरी ज्ञात कीजिए ।

Find the shortest distance between the lines

$$\overrightarrow{\mathbf{r}} = (4\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}}) + \lambda(\overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} - 3\overrightarrow{\mathbf{k}}) \text{ and } \overrightarrow{\mathbf{r}} = (\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}} + 2\overrightarrow{\mathbf{k}}) + \mu(2\overrightarrow{\mathbf{i}} + 4\overrightarrow{\mathbf{j}} - 5\overrightarrow{\mathbf{k}}).$$

22. मान लीजिए कोई लड़की एक पासा उछालती है । यदि उसे 1 या 2 प्राप्त हो, तो वह एक सिक्के को 3 बार उछालती है और पटों की संख्या नोट करती है । यदि उसे 3, 4, 5 अथवा 6 प्राप्त हो, तो वह एक सिक्के को एक बार उछालती है और नोट करती है कि उसे 'चित' या 'पट' प्राप्त हुआ । यदि उसे ठीक एक 'पट' प्राप्त हो, तो उसके द्वारा उछाले गए पासे पर 3, 4, 5 अथवा 6 प्राप्त करने की प्रायिकता क्या है ?

Suppose a girl throws a die. If she gets 1 or 2, she tosses a coin three times and notes the number of tails. If she gets 3, 4, 5 or 6, she tosses a coin once and notes whether a 'head' or 'tail' is obtained. If she obtained exactly one 'tail', what is the probability that she threw 3, 4, 5 or 6 with the die ?

23. प्रथम पाँच धन पूर्णांकों में से दो संख्याएँ यादृच्छया (बिना प्रतिस्थापन के) चुनी गईं । मान लीजिए X प्राप्त दोनों संख्याओं में से बड़ी संख्या को व्यक्त करता है । X का माध्य तथा प्रसरण ज्ञात कीजिए ।

Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X.

खण्ड द

SECTION D

प्रश्न संख्या 24 से 29 तक प्रत्येक प्रश्न के 6 अंक हैं । Question numbers 24 to 29 carry 6 marks each.

24. माना A = $\{x \in Z : 0 \le x \le 12\}$. दर्शाइए कि R = $\{(a, b) : a, b \in A, |a - b|, 4 \ H$ भाज्य है} एक तुल्यता संबंध है । 1 से संबंधित सभी अवयवों का समुच्चय ज्ञात कीजिए । तुल्यता वर्ग [2] भी लिखिए ।

अथवा

दर्शाइए कि फलन f: ℝ→ℝ जो सभी $x \in \mathbb{R}$ के लिए $f(x) = \frac{x}{x^2 + 1}$ द्वारा परिभाषित है, न तो एकैकी है और न ही आच्छादक है । यदि $g: \mathbb{R} \to \mathbb{R}, g(x) = 2x - 1$ द्वारा परिभाषित है, तो fog(x) भी ज्ञात कीजिए ।

Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that

 $R = \{(a, b) : a, b \in A, |a - b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2].

OR

Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in \mathbb{R}$ is neither one-one nor onto. Also, if $g: \mathbb{R} \to \mathbb{R}$ is defined as g(x) = 2x - 1, find fog(x).

25. $\operatorname{ZG} A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ \overline{e} , \overline

निकाय

2x - 3y + 5z = 113x + 2y - 4z = -5x + y - 2z = -3

को हल कीजिए।

अथवा

प्रारंभिक पंक्ति रूपान्तरणों द्वारा आव्यूह $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$ का व्युत्क्रम ज्ञात कीजिए ।

If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, find A^{-1} . Use it to solve the system of equations 2x - 3y + 5z = 113x + 2y - 4z = -5x + y - 2z = -3.

OR

Using elementary row transformations, find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}.$$

65/1

26. प्रथम चतुर्थांश में, x-अक्ष, रेखा y = x तथा वृत्त $x^2 + y^2 = 32$ द्वारा घिरे क्षेत्र का क्षेत्रफल, समाकलनों के प्रयोग से ज्ञात कीजिए।

Using integration, find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.

```
27. मूल्यांकन कीजिए :\int_{0}^{\pi/4} \frac{\sin x + \cos x}{16 + 9 \sin 2x} dx
```

अथवा

योगों की सीमा के रूप में

$$\int_{1}^{3} (x^2 + 3x + e^x) dx$$

Evaluate :

$$\int_{0}^{\pi/4} \frac{\sin x + \cos x}{16 + 9\sin 2x} \, \mathrm{d}x$$

Evaluate

$$\int_{1}^{3} (x^2 + 3x + e^x) \, dx,$$

as the limit of the sum.

28. बिन्दु (-1, -5, -10) से रेखा $\overrightarrow{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ और समतल $\overrightarrow{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5$ के प्रतिच्छेदन बिन्दु के मध्य की दूरी ज्ञात कीजिए ।

Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\vec{r} = 2\hat{i} - \hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5$.

29. एक कारखाने में दो प्रकार के पेंच A और B बनते हैं । प्रत्येक के निर्माण में दो मशीनों के प्रयोग की आवश्यकता है, जिसमें एक स्वचालित है और दूसरी हस्तचालित है । एक पैकेट पेंच 'A' के निर्माण में 4 मिनट स्वचालित और 6 मिनट हस्तचालित मशीन, तथा एक पैकेट पेंच 'B' के निर्माण में 6 मिनट स्वचालित और 3 मिनट हस्तचालित मशीन का कार्य होता है । प्रत्येक मशीन किसी भी दिन के लिए अधिकतम 4 घंटे काम के लिए उपलब्ध है । निर्माता पेंच 'A' के प्रत्येक पैकेट पर 70 पैसे और पेंच 'B' के प्रत्येक पैकेट पर ₹ 1 का लाभ कमाता है । यह मानते हुए कि कारखाने में निर्मित सभी पेंचों के पैकेट बिक जाते हैं, ज्ञात कीजिए कि प्रतिदिन कारखाने के मालिक द्वारा कितने पैकेट विभिन्न पेंचों के बनाए जाएँ जिससे लाभ अधिकतम हो । उपर्युक्त रैखिक प्रोग्रामन समस्या को सूत्रबद्ध कीजिए तथा इसे ग्राफीय विधि से हल कीजिए तथा अधिकतम लाभ भी ज्ञात कीजिए ।

A factory manufactures two types of screws A and B, each type requiring the use of two machines, an automatic and a hand-operated. It takes 4 minutes on the automatic and 6 minutes on the hand-operated machines to manufacture a packet of screws 'A' while it takes 6 minutes on the automatic and 3 minutes on the hand-operated machine to manufacture a packet of screws 'B'. Each machine is available for at most 4 hours on any day. The manufacturer can sell a packet of screws 'A' at a profit of 70 paise and screws 'B' at a profit of \neq 1. Assuming that he can sell all the screws he manufactures, how many packets of each type should the factory owner produce in a day in order to maximize his profit ? Formulate the above LPP and solve it graphically and find the maximum profit.

12