Some applications of Trigonometry

I - Choose the correct alternative and write the complete answer along with its letter of alphabet.

1. In the following figure $\mathrm{AB} \perp \mathrm{BC}$ and $\angle A C B=30^{\circ}$, given that $B C=\sqrt{300}$. The length of $A B$ is:
A] 10 m
B] 100 m
C] $10 \sqrt{3} \mathrm{~m}$
D] $100 \sqrt{3} \mathrm{~m}$

2. If a vertical pole of length 6 m casts a shadow 4 m long of the ground and at the Same time a tower casts a shadow 28 m long, then the height of the tower is:
A] 42 m
B] 21 m
C] 12 m
D] 45 m
3. The ratio of the lengths of a tree and its shadow is $1: \frac{1}{\sqrt{3}}$. The angle of elevation of sun is:
A] 30°
B] 45°
C] 60°
D] 90°
4. The angle of elevation of the top of a tower from a point of the ground, which is 30 m away from the foot of a tower of height $10 \sqrt{3} \mathrm{~m}$, is:
A] 45°
B] 60°
C] 30°
D] 90°
5. The angle formed by the line of sight with the horizontal, when the point being viewed is above the horizontal level is called:
A] Vertical angle
B] Angle of depression
C] Angle of elevation
D] Obtuse angle.
6. If altitude of the sun is 60°, the height of a tower which casts a shadow of length 30 m is:
A] $30 \sqrt{3} \mathrm{~m}$
B] 15 m
C] $\frac{30}{\sqrt{3}} \mathrm{~m}$
D] $15 \sqrt{2} \mathrm{~m}$
7. The ratio of the length of a pole and its shadow is $1: \sqrt{3}$. The angle of elevation of the sun is:
A] 90°
B] 60°
C] 30°
D] 45°
8. A ladder of 10 m length touches a wall at height of 5 m . The angle θ made by It with the horizontal is
A] 90°
B] 60°
C] 45°
D] 30°
9. The measure of angle of elevation of top of tower $75 \sqrt{3} \mathrm{~m}$ high from a point at a distance of 75 m from foot of tower in a horizontal plane is:
A] 30°
B] 60°
C] 90°
D] 45°
10. A pole 6 m high casts a shadow $2 \sqrt{3} \mathrm{~m}$ long on the ground, then the sun's elevation is
A] 45°
B] 30°
C] 60°
D] 90°
11. A pole 10 m high cast a shadow 10 m long on the ground, then the sun's elevation is
A] 60°
B] 45°
C] 30°
D] 90°
12. If the altitude of the sun is 60°, the height of a tower which casts a shadow Of length 30 m is:
A] $30 \sqrt{3} \mathrm{~m}$
B] $\frac{30}{3} \sqrt{3} \mathrm{~m}$
C] $15 \sqrt{3} \mathrm{~m}$
D] 15 m
13. If the ratio of height of a tower and the length of its shadow on the ground is $\sqrt{3}: 1$, then the angle of elevation of the sun is
A] 60°
B] 45°
C] 30°
D] 90°
14. The length of the string of a kite flying at 100 mts above the ground with the elevation of 60° is:
A] 100 m
B] $100 \sqrt{2} \mathrm{~m}$
C] $\frac{200}{\sqrt{3}} \mathrm{~m}$
D] 200 m
15. The length of the shadow of a 20 m tall pole, on the ground when the sun's elevation is 45° is:
A] 20 m
B] $20 \sqrt{2} \mathrm{~m}$
C] 50 m
D] $40 \sqrt{2} \mathrm{~m}$
16. When the angle of elevation of sun is 30° the length of the shadow cast by 50 m high building is.
A] $\frac{50}{\sqrt{3}} \mathrm{~m}$
B] $50 \sqrt{3} \mathrm{~m}$
C] $25 \sqrt{3} \mathrm{~m}$
D] $100 \sqrt{3} \mathrm{~m}$
17. If $\mathrm{AB}=4 \mathrm{~m}$ and $\mathrm{AC}=8 \mathrm{~m}$, then angle of elevation of A as observed from C is.
A] 60°
B] 30°
C] 45°
D] Cannot be determined

18. If the angle of depression of an object from a 75 m high tower is 30°, then the distance of the object from the base of tower is
a] $25 \sqrt{3} \mathrm{~m}$
B] $50 \sqrt{3} \mathrm{~m}$
C] $75 \sqrt{3} \mathrm{~m}$
D] 150 m
19. The ratio of the length of a rod and its shadow is $1: \sqrt{3}$, then the angle of elevation of the sun is:
A] 30°
B] 45°
C] 60°
20. A tree casts a shadow 4 m long on the ground, when the angle of elevation Of the sun is 45°. The height of the tree (in metres) is:
A] 3
B] 4
C] 4.5
D] 5.2
21. The angle of depression from the top of a tower 12 m high, at a point on the ground is 30°. The distance of the point from the top of the tower is:
A] 12 m
B] 6 m
C] $12 \sqrt{3} \mathrm{~m}$
D] 24 m
22. If a pole of height 6 m casts a shadow $2 \sqrt{3}$ long on the ground, then the Sun's elevation is:
A] 30°
B] 60°
C] 45°
D] 90°
23. The angle of elevation of the top of a tower from a point on the ground is 45°. If the observer is 42 m away from the foot of the tower, the height of the tower is
A] 63 m
B] 21 m
C] 84 m
D] 42 m
24. If the height and length of the shadow of a man are the same, then the angle of elevation of the sun is
A] 30°
B] 60°
C] 45°
D] 15°
25. If sun's elevation is 60° then a pole of height 6 m will cast a shadow of length.
A] $6 \sqrt{3} \mathrm{~m}$
B] $\sqrt{3} \mathrm{~m}$
C] $2 \sqrt{3} \mathrm{~m}$
D] $3 \sqrt{2} \mathrm{~m}$
