ONLINE MATHS CLASS - X - 05 (28 / $06 / 2021$)

1. ARITHMETIC SEQUENCE - CLASS 3

What did we study in the last class?

Each term of a sequence is related to its position .
The $\mathrm{n}^{\text {th }}$ term of a sequence is its general form .
The $n^{\text {th }}$ term of a sequence is also called its algebraic form .

Activity 1
Consider the following number sequences .

	Number sequence
Natural numbers	$1,2,3,4, \ldots$
Even numbers	$2,4,6,8, \ldots$
Multiples of 5	$5,10,15,20, \ldots$
Natural numbers which leave remainder 2	
wherimeter division by 3	

What are the special features of the above number sequences ?

$1,2,3,4, \ldots$	$1,(1+1),(2+1),(3+1), \ldots$
$2,4,6,8, \ldots$	$2,(2+2),(4+2),(6+2), \ldots$
$5,10,15,20, \ldots$	$5,(5+5),(10+5),(15+5), \ldots$
$2,5,8,11, \ldots$	$2,(2+3),(5+3),(8+3), \ldots$
$4,8,12,16, \ldots$	$4,(4+4),(8+4),(12+4), \ldots$

Finding

Here each sequence got by starting with a number and adding a fixed number repeatedly

Arithmetic sequences

A sequence got by starting with any number and adding a fixed number repeatedly is called an arithmetic sequence .

Activity 2

1. Consider the sequence of sums of the outer angles of polygons .

Polygon	Triangle	Quadrilateral	Pentagon	Hexagon
Sum of outer angles	360°	360°	360°	360°

and continue like this
Sequence $=360^{\circ}, 360^{\circ}, 360^{\circ}, 360^{\circ}$, . .
Here the sequence start with 360 and adding 0 repeatedly. So this sequence is an arithmetic sequence .

2 . Consider the sequence $\quad 1,1 \frac{1}{2}, 2,2 \frac{1}{2}, 3,3 \frac{1}{2}, \ldots$
Here the sequence start with 1 and adding $\frac{1}{2}$ repeatedly . So this sequence is an arithmetic sequence .
3. Consider the sequence of squares with length of the sides go $1,2,3,4, \ldots$

Length of the diagonal of a square $=\sqrt{2} \times$ side
Sequence of the lengths of the diagonals $=\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots$.
Here the sequence start with $\sqrt{2}$ and adding $\sqrt{2}$ repeatedly. So this sequence is an arithmetic sequence .
3. An object moves along a straight line at 10 metres / second . Applying a constant force in the opposite direction, the speed is reduced by 2 metres / second .

The sequence of the speed is $10,8,6,4, \ldots$
Here the terms are got by subtracting 2 repeatedly from 10 . This is also considered an arithmetic sequence . (we can interpret subtract 2 as adding-2)

Finding

In an arithmetic sequence, we add the same number to move from a term immediately after it. So if we subtract from any term , the term immediately before it , we get this number .

An arithmetic sequence is a sequence in which we get the same number on subtracting from any term , the term immediately preceding it .

Common difference of an arithmetic sequence

In an arithmetic sequence, we get the same number on subtracting from any term , the term immediately preceding it . This constant difference is called the common difference of an arithmetic sequence .

Note :

Very often, we find out whether a given sequence is an arithmetic sequence by checking whether the difference between the terms is constant .

Note :

Usually the terms in a sequence are written in algebra as

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots . \operatorname{or} y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, \ldots .
$$

First term	Second term	Third term	Fourth term	. . .
x_{1}	x_{2}	x_{3}	x_{4}	. .

Sequence	Distance between two consecutive terms			
	$x_{2}-x_{1}$	$x_{3}-x_{2}$	$x_{4}-x_{3}$	$x_{5}-x_{4}$
$\mathbf{1 , 2}, \mathbf{3}, 4,5, \ldots$	$2-\mathbf{1}=1$	$3-2=1$	$4-3=1$	$5-4=1$
$2,4,6,8,10, \ldots$	$4-2=2$	$6-4=2$	$8-6=2$	$10-8=2$
$5,10,15,20,25, \ldots$	$10-5=5$	$15-10=5$	$20-15=5$	$25-20=5$
$2,5,8,11,14, \ldots$	$5-2=3$	$8-5=3$	$11-8=3$	$14-11=3$
$4,8,12,16,20, \ldots$	$8-4=4$	$12-8=4$	$16-12=4$	$20-16=4$
$360,360,360,360,360, \ldots$	$360-360=0$	$360-360=0$	$360-360=0$	$360-360=0$
$\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, 5 \sqrt{2}, \ldots$	$2 \sqrt{2}-\sqrt{2}=\sqrt{2}$	$3 \sqrt{2}-2 \sqrt{2}=\sqrt{2}$	$4 \sqrt{2}-3 \sqrt{2}=\sqrt{2}$	$5 \sqrt{2}-4 \sqrt{2}=\sqrt{2}$
$10,8,6,4,2, \ldots$	$8-10=-2$	$6-8=-2$	$4-6=-2$	$2-4=-2$

Activty 3 (Multiplying natural numbers and the adding / subtracting a fixed number)

	Number sequence
Multiply natural numbers by $\mathbf{6}$	$\mathbf{6 , 1 2 , 1 8 , 2 4 , 3 0 , \ldots}$
Multiply natural numbers by $\mathbf{6}$ and then add 1	$7,13,19,25,31, \ldots$
Multiply natural numbers by $\mathbf{6}$ and then subtract 1	$5,11,17,23,29, \ldots$

Are these arithmetic sequences ?

Sequence	Distance between two consecutive terms			
	$x_{2}-x_{1}$	$x_{3}-x_{2}$	$x_{4}-x_{3}$	$x_{5}-x_{4}$
6, 12, 18, 24, 30, .	12-6=6	18-12=6	24-18=6	30-24=6
$7,13,19,25,31, \ldots$	$13-7=6$	$19-13=6$	$25-19=6$	$31-25=6$
$5,11,17,23,29, \ldots$	$11-5=6$	17-11-6	$23-17=6$	$29-23=6$

Since the difference between any term and the term before it is a constant, the above sequences are arithmetic sequences.

