Mathematics Online Class X On 01-07-2021

ARITHMETIC SEQUENCE Click

Answers of questions on previous class

- 1. In each of the arithmetic sequences below, some terms Find them.
 - i) 24, 42, \bigcirc , \bigcirc , ...

$$\chi_2 - \chi_1 = (2-1)d$$
 $d = 42 - 24 = 18$

$$d = 42 - 24 = 18$$

$$\chi_3 = 42 + 18 = 60$$

$$x_4 = 60 + 18 = 78$$

ii)(), 24, 42,(),...

$$\chi_3 - \chi_2 = (3-2)d$$
 $d = 42 - 24 = 18$

$$d = 42 - 24 = 18$$

$$x_1 = 24 - 18 = 6$$

$$x_4 = 42 + 18 = 60$$

iii) \bigcirc , \bigcirc , 24, 42, ...

$$\chi_4 - \chi_3 = (3-2)d$$

$$d = 42 - 24 = 18$$

$$X_2 = 24 - 18 = 6$$

$$x_1 = 6 - 18 = -12$$

iv) 24 (), 42 ()

$$\chi_3 - \chi_1 = (3-1)d$$

$$\chi_3 - \chi_1 = (3-1)d$$
 $2d = 42 - 24 = 18$ $d = \frac{18}{2} = 9$

$$\mathbf{d} = \frac{18}{2} = 9$$

$$\chi_2 = 24 + 9 = 33$$

$$x_4 = 42 + 9 = 51$$

 $(v) (), 24, (), 42, \dots$

$$\chi_4 - \chi_2 = (4-2)d$$

$$2d = 42 - 24 = 18$$

$$\chi_4 - \chi_2 = (4-2)d$$
 $2d = 42 - 24 = 18$ $d = \frac{18}{2} = 9$

$$X_1 = 24 - 9 = 15$$

$$X_3 = 24 + 9 = 33$$

vi) 24, (), (), 42, ...

$$X_4 - X_1 = (4-1)d$$

$$X_4 - X_1 = (4-1)d$$
 $3d = 42 - 24 = 18$ $d = \frac{18}{3} = 6$

$$d = \frac{18}{2} = 6$$

$$X_2 = 24 + 6 = 30$$

$$X_3 = 30 + 6 = 36$$

2. The terms in two positions of some arithmetic sequences are given below. Write the first five terms of each.

i) 3rd term 34

6th term 67

$$\chi_6 - \chi_3 = (6-3)d$$

$$3d = 67 - 34 = 33$$

$$3d = 67 - 34 = 33$$
 $\therefore d = \frac{33}{3} = 11$

$$X_1 = X_3 - 2d = 34 - 2 \times 11 = 34 - 22 = 12$$

$$X_2 = 12 + 11 = 23$$

$$X_3 = 23 + 11 = 34$$

$$X_4 = 34 + 11 = 45$$

$$X_5 = 45 + 11 = 56$$

ii) 3rd term 43

6th term 76

$$\chi_6 - \chi_3 = (6-3)d$$
 $3d = 76 - 43 = 33$

$$d = \frac{33}{3} = 11$$

$$X_1 = X_3 - 2d = 43 - 2 \times 11 = 43 - 22 = 21$$

$$X_2 = 21 + 11 = 32$$

$$X_3 = 32 + 11 = 43$$

$$X_4 = 43 + 11 = 54$$

$$X_5 = 54 + 11 = 65$$

iii) 3rd term 2

 5^{th} term 3

$$\mathfrak{X}_5 - \mathfrak{X}_3 = (5-3)\mathbf{d}$$

$$2d = 3 - 2 = 1$$

$$d = \frac{1}{2}$$

$$\mathfrak{X}_1 = \mathfrak{X}_3 - 2\mathbf{d} = 2 - 2 \times \frac{1}{2} = 2 - 1 = 1$$

$$x_2 = 1 + \frac{1}{2} = 1 \frac{1}{2}$$

$$\chi_3 = 1 \frac{1}{2} + \frac{1}{2} = 2$$

$$X_4 = 2 + \frac{1}{2} = 2 \frac{1}{2}$$

$$\chi_5 = 2 \frac{1}{2} + \frac{1}{2} = 3$$

iv) 4th term 2

7th term 3

$$\chi_7 - \chi_4 = (7-4)d$$
 $3d = 3 - 2 = 1$ $d = \frac{1}{2}$

$$3d = 3 - 2 = 1$$

$$d = \frac{1}{3}$$

$$X_1 = X_4 - 3d = 2 - 3 \times \frac{1}{3} = 2 - 1 = 1$$

$$\Upsilon_2 = 1 + \frac{1}{3} = 1 \frac{1}{3}$$

$$\chi_3 = 1 \frac{1}{3} + \frac{1}{3} = 1 \frac{2}{3}$$

$$\chi_4 = 1 \frac{2}{3} + \frac{1}{3} = 2$$

$$\chi_5 = 2 + \frac{1}{3} = 2 \frac{1}{3}$$

v) 2nd term 5

5th term 2

$$\chi_5 - \chi_2 = (5-2)d$$

$$3d = 2 - 5 = -3$$

3 term 2

$$\chi_5 - \chi_2 = (5-2)d$$
 3d = 2 - 5 = -3 $\therefore d = \frac{-3}{3} = -1$

$$X_1 = X_2 - 1d = 5 - 1 \times -1 = 5 + 1 = 6$$

$$X_2 = 6 + (-1) = 5$$

$$X_3 = 5 + (-1) = 4$$

$$X_4 = 4 + (-1) = 3$$

$$X_5 = 3 + (-1) = 2$$

3. The 5th term of an arithmetic sequence is 38 and 9th term is 66 .What is its 25th term?

$$\chi_5 = 38$$
 $\chi_9 = 66$

$$\chi_9 - \chi_5 = (9-5)d$$

$$4d = 66 - 38 = 28$$

$$4d = 66 - 38 = 28$$
 $\therefore d = \frac{28}{4} = 7$

$$X_{25} = X_9 + 16d = 66 + 16 \times 7 = 66 + 112 = 178$$

4. Is 101 a term of the arithmetic sequence 13, 24, 35,...

What about 1001?

$$X_1 = 13$$

$$d = 24 - 13 = 11$$

101 – 13 = 88. Which is a multiple of common difference 11

∴ 101 is a term of this sequence.

Now

1001 - 13 = 988 Which is not a multiple of common difference 11

∴ 1001 is not a term of this sequence.

Fill each box with numbers such that each row and column must be an arithmetic sequence.

Answer

Simply we can fill each box with natural numbers from 1 to 16

13 2.	14	15 Q	16 Q	d = 1	
9	10	11	12	d = 1	Total number of boxes= $15 + 1 = 16$
5	6	7	8	d = 1	Here $\frac{16-1}{1} = 15$
1	2	3	4	d = 1	16.1

Here each row is an arithmetic sequence with common difference 1 and

each column is an arithmetic sequence with common difference ${\bf 4}$.

Question

Fill each box with numbers such that each row and column must be an arithmetic sequence.

Answer

Here two numbers are fixed.

We can simply we write continuous even natural numbers, we get

2	4	6	8	d = 2	Here $\frac{32-2}{2} = 15$
10	12	14	16	d = 2	Here $\frac{322}{2}$ = 15
18	20	22	24	d = 2	Total number of boxes= $15 + 1 = 16$
26	28	30	32	d = 2	50ACS= 13 1 1 = 10
2	2	Q	Q		
Ш	Ш	П	Ш		
00	00	00	00		

Here each row is an arithmetic sequence with common difference ${\bf 2}$

and

each column is an arithmetic sequence with common difference $\mathbf{8}$. Question

Fill each box with numbers such that each row and column must be an arithmetic sequence.

Answer

Here two numbers are fixed.

We can simply we write continuous odd natural numbers, we get,

1	3	5	7	d = 2
9	11	13	15	d = 2
17	19	21	23	d = 2
25	27	29	31	d = 2
2	2	<u></u>	2	4
KIL	П	Ш	Ш	
000	00	00	00	

Here	31 -	1_	15
	2		10

Total number of boxes= 15 + 1 = 16

Also

1	3	5	7
9	11	13	15
17	19	21	23
25	27	29	31

Here we can see that the numbers in both the diagonals is also an arithmetic sequence .

From the above questions , we can see that

$$TOTAL\ NUMBER\ OF\ TERMS = \frac{LAST\ TERM - FIRST\ TERM}{COMMON\ DIFFERENCE} + 1$$

Question

Fill up the empty cells of the given square such that the numbers in each row and column form an arithmetic sequences

1		4
7		28

Answer

We have

Term difference = position difference × common difference

$$d = \frac{4 \cdot 1}{3} = 1$$

$$d = \frac{28 - 7}{3} = 7$$

$$d = \frac{7 - 1}{3}$$

$$d = \frac{28 - 4}{3}$$

Like this we can fill the empty cells

1	2	3	4
3	6	9	12
5	10	15	20
7	14	21	28

Question

How many three digit numbers are there, which leave remainder 3 on division by 7?

OR

101, 108, 115, ..., 997. How many terms are there in this arithmetic sequence?

Answer

Three digit numbers which leave remainder 3 on division by 7 are $101, 108, 115, \ldots, 997$.

This is an arithmetic sequence with first term 101 and last term 997 with common difference 7.

TOTAL NUMBER OF TERMS =
$$\frac{LAST TERM - FIRST TERM}{COMMON DIFFERENCE} + 1$$

$$= \frac{997 - 101}{7} + 1$$

$$= \frac{896}{7} + 1$$

$$= 128 + 1$$

$$= 129$$

ASSIGNMENT

How many two digit numbers are there which leave a remainder 2 on division by 3?