1. Each of the numbers in the list $100,70,40,10$ $\qquad$ Is called a
A. Term
B. Difference
C. Factor
2. A list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term is called an
A. Geometric Progression
B. Arithmetic progression
C. Harmonic Progression
3. The common difference of the AP $6,3,0,-3$ $\qquad$ is
A. 3
B. -3
C. 0
4. Which of the following list of numbers does not form an AP?
A. $4,10,16,22$ $\qquad$
B. $1,-1,-3,-5$. $\qquad$
C. $-2,2,-2,2,-2$.
5. The $n$th term of the AP with first term ' $a$ ' and common difference ' $d$ ' is given by
A. $a+(n-1) d$
B. $a-(n-1) d$
C. $a+(n-1) d$
6. The 10th term of the AP $2,7,12$ is $\qquad$
A. 45
B. 47
C. 49
7. Which term of the AP $21,18,15$ is -81 ?
A. 33
B. 35
C. 37
8. How many two digit numbers are divisible by 3 ?
A. 30
B. 60
C. 90
9. The sum of first $n$ positive integers is given by ————-
A. $n(n-1) / 2$
B. $n(n+1) / 2$
C. $n(n-1) / 4$
10. If $a, b, c$ are in $A P$, then $b=-— —$ and is called the arithmetic mean of $a$ and $c$.
A. $(a+c) / 2$
B. $(a-c) / 2$
C. $(a+b) / 2$
11. The sum of the first 1000 positive integers is -————-
A. 5050
B. 500500
C. 500050
12. The list of numbers $-15,-10,-5,0,5$ $\qquad$ is
A. an AP with $d=5$
B. an AP with $d=-5$
C. an AP with $d=0$
13. In an AP if $d=-5, n=3$ and $n$th term $=0$ then $a$ is $\qquad$
A. 10
B. -10
C. 0
14. The sum of the first 22 terms of the AP $8,3,-2$
A. -989
B. -979
C. 979
15. If 'l' is the last term of the finite AP, then the sum of all terms of the AP is given by
A. $\mathrm{S}=\mathrm{n}(\mathrm{a}+\mathrm{l}) / 2$
B. $S=n(a-I) / 2$
C. $S=n(a+1) / 4$

## ANSWERS:

## 1. Term

2. Arithmetic Progression
3. -3
4. $-2,2,-2,2,-2 \ldots \ldots \ldots \ldots \ldots .$.
5. $a+(n-1) d$
6. 47
$a+(n-1) d=2+(10-1) 5=2+9 \times 5=2+45=47$
7.35
nth term $=a+(n-1) d$
$-81=21+(n-1)(-3)$
$-81=21+(-3 n)+3$
$-81=24-3 n$
$-81-24=-3 n$
$-105=-3 n$
$n=105 / 3=35$
8.30

The list of two digit numbers divisible by 3 is $12,15,18$.
Here $\mathrm{a}=12, \mathrm{~d}=3$, nth term $=99$
$99=12+(n-1) 3$
$99=12+3 n-3$
$99-12+3=3 n$
$90=3 n$
$n=90 / 3=30$
9. $n(n+1) / 2$
10. $(a+c) / 2$
11. 500500
12. an AP with $\mathrm{d}=5$

$$
\begin{aligned}
& \text { 13. } 10 \\
& \text { nth term }=a+(n-1) d \\
& 0=a+(3-1)(-5) \\
& 0=a+(-10) \\
& a=10 \\
& 14 .-979 \\
& S=n / 2(2 a+(n-1) d) \\
& =22 / 2(2 \times 8+(22-1)(-5)) \\
& =11(16+-105) \\
& =11 \times(-89) \\
& =-979 \\
& 15 . S=n(a+l) / 2
\end{aligned}
$$

## Class 10 Maths MCQs Chapter 5 Arithmetic Progressions

1. The $n^{\text {th }}$ term of an A.P. is given by $a_{n}=3+4 n$. The common difference is
(a) 7
(b) 3
(c) 4
(d) 1
2. If $p, q, r$ and $s$ are in A.P. then $r-q$ is
(a) $s$ - p
(b) $s-q$
(c) $s-r$
(d) none of these
3. If the sum of three numbers in an A.P. is 9 and their product is 24 , then numbers are
(a) 2, 4, 6
(b) 1,5, 3
(c) $2,8,4$
(d) 2, 3, 4
4. The $(n-1)^{\text {th }}$ term of an A.P. is given by $7,12,17,22, \ldots$ is
(a) $5 n+2$
(b) $5 n+3$
(c) $5 n-5$
(d) $5 n-3$
5. The $n^{\text {th }}$ term of an A.P. $5,2,-1,-4,-7 \ldots$ is
(a) $2 n+5$
(b) $2 n-5$
(c) $8-3 n$
(d) $3 n-8$
6. The $10^{\text {th }}$ term from the end of the A.P. $-5,-10,-15, \ldots,-1000$ is
(a) -955
(b) -945
(c) -950
(d) -965
7. Find the sum of 12 terms of an A.P. whose nth term is given by $a_{n}=3 n+4$
(a) 262
(b) 272
(c) 282
(d) 292
8. The sum of all two digit odd numbers is
(a) 2575
(b) 2475
(c) 2524
(d) 2425
9. The sum of first n odd natural numbers is
(a) $2 n^{2}$
(b) $2 n+1$
(c) $2 n-1$
(d) $n^{2}$
10. If $(p+q)^{\text {th }}$ term of an A.P. is $m$ and $(p-q)^{\text {tn }}$ term is $n$, then $p$ th term is

## (a) $m n$

(c) $\frac{1}{2}(m-n)$
(b) $\sqrt{m n}$
(d) $\frac{1}{2}(m+n)$
11. If $a, b, c$ are in A.P. then $a-b b-c$ is equal to
(a) 1
(b) $\frac{b}{a}$
(c) $\frac{a}{c}$
(d) $\frac{c}{a}$
12. The number of multiples lie between n and $\mathrm{n}^{2}$ which are divisible by n is
(a) $n+1$
(b) n
(c) $\mathrm{n}-1$
(d) $\mathrm{n}-2$
13. If $a, b, c, d, e$ are in A.P., then the value of $a-4 b+6 c-4 d+e$ is
(a) 0
(b) 1
(c) -1 .
(d) 2
14. The next term of the sequence

$$
\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}} \text { is }(x \neq 1) .
$$

(a) $1+2 \sqrt{x}$
(b) $1-2 \sqrt{x}$
(c) $\frac{1-2 \sqrt{x}}{1-x}$
(d) $\frac{1+2 \sqrt{x}}{1-x}$
15. $\mathrm{n}^{\text {th }}$ term of the sequence $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots$ is
(a) a + nd
(b) $a-(n-1) d$
(c) $a+(n-1) d$
(d) $n+n d$
16. The 10 th term from the end of the A.P. $4,9,14, \ldots, 254$ is
(a) 209
(b) 205
(c) 214
(d) 213
17. If $2 x, x+10,3 x+2$ are in A.P., then $x$ is equal to
(a) 0
(b) 2
(c) 4
(d) 6
18. The sum of all odd integers between 2 and 100 divisible by 3 is
(a) 17
(b) 867
(c) 876
(d) 786
19. If the numbers $a, b, c, d$, $e$ form an A.P., then the value of $a-4 b+6 c-4 d+e$ is (a) 0
(b) 1
(c) -1
(d) 2
20. If 7 times the $7^{\text {th }}$ term of an A.P. is equal to 11 times its $11^{\text {th }}$ term, then $18^{\text {th }}$ term is (a) 18
(b) 9
(c) 77
(d) 0
21. If $p, q, r$ are in $A P$, then $p^{3}+r^{3}-8 q^{3}$ is equal to
(a) 4 pqr
(b) -6 pqr
(c) 2 pqr
(d) 8 pqr
22. In an AP, if $\mathrm{a}=3.5, \mathrm{~d}=0, \mathrm{n}=101$, then a will be [NCERT Exemplar Problems]
(a) 0
(b) 3.5
(c) 103.5
(d) 104.5
23. The list of numbers $-10,-6,-2,2, \ldots$ is [NCERT Exemplar Problems]
(a) an AP with $\mathrm{d}=-16$
(b) an AP with $\mathrm{d}=4$
(c) an AP with $\mathrm{d}=-4$
(d) not an AP
24. Two APs have the same common difference. . The first term of one of these is -1 and that of the other is -8 . Then the difference between their 4th terms is [NCERT Exemplar Problems]
(a) -1
(b) -8
(c) 7
(d) -9
25. In an AP, if $d=-2, n=5$ and an $=0$, the value of $a$ is
(a) 10
(b) 5
(c) -8
(d) 8
26. If the common difference of an AP is 3 , then $a_{20}-a_{15}$ is
(a) 5
(b) 3
(c) 15
(d) 20
27. The next term of the $\operatorname{AP} \sqrt{ } 18, \sqrt{ } 50, \sqrt{ } 98, \ldots \ldots \ldots$... is
(a) $\sqrt{ } 146$
(b) $\sqrt{ } 128$
(c) $\sqrt{ } 162$
(d) $\sqrt{ } 200$
28. The common difference of the AP
$\frac{1}{p}, \frac{1-p}{p}, \frac{1-2 p}{p}, \ldots$. is
(a) $p$
(b) -p
(c) -1
(d) 1
29. If the $n^{\text {th }}$ term of an AP is $(2 n+1)$, then the sum of its first three terms is
(a) $6 n+3$
(b) 15
(c) 12
(d) 21
30. An AP consists of 31 terms. If its 16 th term is $m$, then sum of all the terms of this AP is
(a) 16 m
(b) 47 m
(c) 31 m
(d) 52 m
31. The first term of an AP of consecutive integers is $p^{2}+1$. The sum of $2 p+1$ terms of this AP is
(a) $(p+1)^{2}$
(b) $(2 p+1)(p+1)^{2}$
(c) $(p+1)^{3}$
(d) $p^{3}+(p+1)^{3}$
32. If the sum of first $n$ terms of an $A P$ is $A n+B n^{2}$ where $A$ and $B$ are constants, the common difference of AP will be
(a) $A+B$
(b) $A-B$
(c) 2 A
(d) 2 B
33. If $p-1, p+3,3 p-1$ are in AP , then p is equal to $\qquad$ .
34. Write down the first four terms of the sequences whose general terms are
(i) $T_{n}=2 n+3$
(ii) $T_{n}=3^{n+1}$
(iii) $T_{1}=2, T_{n}=T_{n-1}+5, n \geq 2$
35. Find:

The 10th term of $10.0,10.5,11.0,11.5, \ldots .$.
36. In an A.P., if the common difference $(d)=-4$ and the seventh term $\left(a_{7}\right)$ is 4 , then find the first term. [CBSE 2018]
37. Write the $\mathrm{n}^{\text {th }}$ term of the A.P. [Delhi 2017 (C)]

38. Which term of the AP $21,18,15, \ldots$, is zero?
39. For what value ofp, are $2 p+1,13,5 p-3$ three consecutive terms of an AP?
40. What is the common difference of an A.P. in which $a_{21}-a_{7}=84$ ? [AI 2017]
41. The first term of an AP is $p$ and its common difference is q. Find its 10th term.
42. Which term of the AP $14,11,8, \ldots$ is -1 ?
43. Write the next two terms of the AP: $1,-1,-3,-5, \ldots$
44. If $a_{n}=n(n-3) n+4$, then find 18 th term of this sequence.
45. If the first term of an AP is 2 and common difference is 4 , then sum of its first 40 terms is $\qquad$ .
46. Three numbers in an AP have sum 24 . Its middle term is $\qquad$ .
47. The value of the expression $1-6+2-7+3-8+\ldots$. to 100 terms is $\qquad$ .
48. If the sum of first $m$ terms of an AP is $2 m^{2}+3 m$, then what is its second term?
49. If the sum of first $p$ terms of an $A P$ is $a p^{2}+b p$, find its common difference.
50. If sum of first $n$ terms of an AP is $2 n^{2}+5 n$. Then find $S_{20}$.

