

ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಲ್ಲಾ ಪಂಚಾಯತ್ ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ

<mark>ಉಪನಿರ್ದೇಶಕರ ಕ</mark>ಛೇಲಿ (ಆಡಆತ). ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಲ್ಲೆ

ಬಹುಆಯ್ಕೆ ಮಾದಲಿ ಪ್ರಶ್ನೆಗಳು

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ 2020-21

ಗಣಿತ

(ಆಂಗ್ಲ ಮಾಧ್ಯಮ)

Multiple choice questions

Arithmetic progressions

Points to remember

- ❖ Arithmetic progression is a sequence in which common difference is constant.
- ❖ General form of arithmetic progression is a, a+d, a+2d, a+3d,.....a+(n-1)d
- Common difference in an A.P $d = a_2 a_1$
- nth term of A.P is $a_n = a+(n-1)d$
- Sum of first n terms of an A.P, $S_n = \frac{n}{2}$ [2a+(n-1)d] or $s_n = \frac{n}{2}$ (a + a_n)
- Sum of first n natural numbers, $s_n = \frac{n}{2}(n+1)$
- Sum of first n even natural numbers = n(n + 1)
- Sum of first n odd natural numbers = n^2

Multiple choice questions

- 1) The 4th term of an Arithmetic progression 5, 8, 11 is
 - a) 15

- **B**) 13
- C) 14
- D) 16
- 2) The common difference in an Arithmetic progression 8, 14, 20 is
 - A) 8

- B) 6
- **C**) 5
- D) -6
- 3) The preceding term of 13 in an Arithmetic progression 13, 10, 7...... Is
 - A) 16

- B) 15
- C) 17
- D) 10

4) The n th term in an	n Arithmetic pro	ogression	n with fi	rst term 'a	and the common			
difference 'd' is								
A) an = $an+1$	B) an = a+((n-1)d	C) an =	a+(n+1)d	D) an = a-1			
5) In an Arithmetic p	progression an =5	5n+2, ther	1 st term	is				
A) 7	B) 6	C) 5		D) 8				
6) In an Arithmetic p	progression an =3	n+5, the	en the 5 th	term is				
A) 30 E	3) 28	C) 20		D) 13				
7) An Arithmetic pro	gression among	g the foll	lowing is	S				
A) 10,7,4,1, I	3) 5,8,12,	C) 0,3,6	,10,	D) 16,8,4,2) -,			
8) How many two digit	t numbers are divi	sible by 5	5					
A) 17	B) 18		C) 19		D) 20			
9) An Arithmetic pro	9) An Arithmetic progression with first term 2 and the common difference 3 is							
A) 2,5,9,	B) 2,5,8,	C)	3,5,7,	D) 2,6,10,				
10) In an A.P, $a_n = 2n$		t of first t			D) 10			
A) 10	B) 12	sion 1 4	C) 1:		D) 18			
11)10 th term of an Arit	unneuc progress	81011 1, 4	, /,	18				
A) 31	B) 27	C) 32	D) 28	3				
12) The Sum of first 20	natural numbers	s is						
A) 210	B) 200 C) 1	90	D) 205					
13) First term in the	given Arithmeti	c progre	ession 5,	8 , 11 ,,,,,,	,,,,, is			
A) 5	B) 8	C)	11	D) 2				
14)An Arithmetic p	rogression amo	ng the fo	ollowing	is				
A) -37,-35,-33,-31	B) 2,4,8,	16	C) 4	10,16,26	D) -5,-10,+10,+5			
15)The common diff	ference in an Ar	rithmetic	progres	sion 10, 14,	, 18 is			

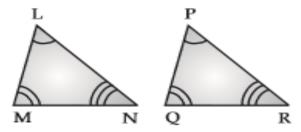
A) 10	B) 4	C) 18	D) -4					
16)The next term	of an Arithmetic pr	rogression 13, 1	10, 7 Is					
A) 3	B) 7	C) 4	D) -4					
17) In an A.P,	$s_n = \frac{n}{2}(7n-1)$, t	hen the common	difference is					
A) 3	B) 5	C) 7	D) 9					
18)In an Arithmet	tic progression an =3:	n+5, then 8 th terr	n is					
A) 29	B) 19	C) 43	D) 26					
19)In an Arithmet	tic progression an =6	n-4, then the fir	est term is					
A) 4	B) 2	C) -4	D) -2					
20) In an Arithmet	tic progression an =2	n+3, then the cor	mmon difference is					
A) 5	B) 1	C) 3	D) 2					
21)In an Arithmet	21) In an Arithmetic progression an =2n then the value of S3 is							
A) 12	B) 2	C) 14	D) 6					
22) The fourth term	in an Arithmetic pro	ogression if S4=	= 38 and S ₃ = 24 is					
A) 5	B) 14	C) 3	D) 8					
	rms of an Arithmetic							
A) 16 , 19 ,	22 , 25	B) 15, 18, 24, 30						
C) 15 , 18	, 21 , 24	D) 15 , 17	D) 15 , 17 , 19 , 21					
24)S ₁₀ in an Arithr terms is 27 is	netic progression if	the sum of first ?	3 terms is 9 and sum of next 3					
A) 30	B) 38	C) 46 D) 3	36					
25) The Sum of first the common di		nmetic progres	sion with first term 'a' and					
A) Sn = n[2a+	·(n-1)d]	B) $S_n = \frac{n}{2} [a +$	(n-1)d]					
C) $S_n = \frac{n}{2} [2a + ($	(n+1)d]	D) $S_n = \frac{n}{2} [2a$	a+(n -1)d]					

26) An Arithmetic progression A) 4,7,11,15	B) 3, 7, 1		difference 4 is
C) 3 , 8 ,13 ,18	D) 3 , 6 , 9	,12	
27) The sum of first n positive into A) $S_n = \frac{(n+2)n}{2}$ B)	•	C) Sn = $\frac{n(n-1)}{2}$	D) $S_n = \frac{n(n-2)}{2}$
28) The common difference in An A) 3√3 B) 3 29) The 10 th term of an Arithmed A) 36	C) √3 D)	$\sqrt{6}$ 4, 7, 10 is	
30) Sum of first 10 odd natural n A) 120 B) 5		10	D) 100
31) In A.P if a=5, d=3, , an =20 th A) 5 32) The meaning of a ₁₀ in Arithm	B) 6	C) 3	D) 7
A) $a+10d$ 33) If 2, x,14 are in Arithmetic A) 28 B) 16	B) a+11d c progression, then the v	•) a-9d
34) $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$ A) $\sqrt{112}$ B) $\sqrt{84}$ 35) The sum of first 'n 'ev	4 C)√98	D) √122	
A) $n(n+1)$ B) The sum of first '10'	n^2 C) $\frac{n}{2}$ even natural numb	D) ers is	n (n -1)
A) 100 B) 90 37) The sum of first 'n' oc A) 2n	,		n^3
38) a, b, c and d are in A. A) (a-b), B) (b-c)	P, then c-b is equal c) C) () (c-d)

ANSWERS:

1	С	11	D	21	А	31	В
2	В	12	Α	22	В	32	С
3	Α	13	Α	23	С	33	D
4	В	14	Α	24	D	34	Α
5	Α	15	В	25	D	35	Α
6	С	16	С	26	В	36	D
7	Α	17	С	27	В	37	С
8	С	18	Α	28	В	38	D
9	В	19	В	29	В		
10	С	20	D	30	D		

Triangles


Points to remember

- ❖ Two figures are similar if and only if they have same shape but not necessarily the same size.
- ❖ Two polygons of same number of sides are similar If
 - 1) All the corresponding angles are equal.
 - 2) All the corresponding sides are in the same ratio or in a proportion.
- Two triangles are said to be similar if there corresponding angles are equal or corresponding sides are proportional.

drawn parallel to one side of a triangle, then it divides the other two sides proportionally."

❖ AA – Similarity criterion

If two triangles if the corresponding angles are equal, then their corresponding sides will be in proportion and hence the two triangle are similar.

In Δ LMN ಮತ್ತು Δ PQR ಗಳಲ್ಲಿ,

(i)
$$\angle L = \angle P$$
, $\angle M = \angle Q$, $\angle N = \angle R$

(ii)
$$\frac{LM}{PQ} = \frac{MN}{QR} = \frac{LN}{PR}$$

 \Rightarrow \triangle LMN \sim \triangle PQR,

- ❖ The areas of similar triangles are proportional to square of the corresponding sides.
- Pythagoras theorem: In a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.
- ❖ Baudhayana theorem: The diagonal of a rectangle. Produces both areas of which its length and breadth produce separately.
- ❖ Pythagorean triplets: The triplets of natural numbers are form a right angled triangle are called pythagorean triplets

❖ Converse of pythagoras theorem:- "If the square on the longest side of a triangle is equal to the sum of the squares on the other two sides then those sides contain a right angle".

Multiple choice questions

- In \triangle ABC, DE \parallel AB. If CD=3cm, EC=4cm, BE=6cm, then DA is equal to 1) (A) 7.5 cm (B) 3 cm (C) 4.5 cm (D) 6 cm
- In fig , if XY|| BC, then $\frac{AX}{XB}$ = 2)

- (A) $\frac{AX}{AY}$ (B) $\frac{AX}{AR}$ (C) $\frac{AY}{YC}$ (D) $\frac{AC}{AY}$
- 3) In a rectangle, length=8cm, breadth=6cm, then the length of its diagonal is equal to
 - (A) 9 cm
- (B) 14 cm
- (C) 10 cm
- (D) 12 cm
- 4) $\triangle ABC \sim \triangle DEF$ and $\frac{BC}{EF} = \frac{3}{5}$ then, $\frac{Area \text{ of } \triangle ABC}{Area \text{ of } \triangle DEF} = \frac{3}{5}$ (A) $\frac{3}{5}$ (B) $\frac{9}{25}$ (C) $\frac{27}{125}$ (D) $\frac{6}{10}$

- 5) $\triangle ABC \sim \triangle PQR$ and $\frac{Area \text{ of } \triangle ABC}{Area \text{ of } \triangle PQR} = \frac{25}{81}$, then BC:PQ is
 - (A) 9:5
- (B) 5:3
- (C) 25:81 (D) 5:9

6) The length of the altitude of an equilateral triangle of side 10cm is

(A) $5\sqrt{3}$ cm

(B) $10\sqrt{3}cm$ (C) $\sqrt{3}$ cm

(D) 75cm

(A) 16:81

(B) 4:9

(C) 2:3

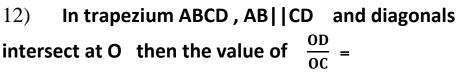
(D) 8:18

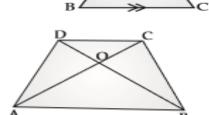
- 8) In triangle PQR , \angle PQR = 90°. PQ=12cm & QR=5cm , the length of PR= (B) 14 cm (C) 10 cm (A) 17 cm (D) 13 cm
- 9) Pythagorean triplet among these


(A) 4, 5, 6 (B) 2, 3, 5

(C) 8, 10, 6

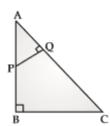
(D) 9, 10, 12


In fig, D and E are the midpoints of AB and AC Respectively. If DE=4 cm then the value BC is


(A) 4 cm (B) 6 cm (C) 8 cm (D) 12 cm

11) In fig , if XY|| BC, then the value of $\frac{AX}{AB}$ =

(A) $\frac{AX}{AY}$ (B) $\frac{AX}{YR}$ (C) $\frac{AY}{AC}$ (D) $\frac{AC}{AY}$

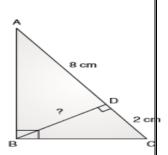


(A) $\frac{OB}{OA}$ (B) $\frac{AB}{CD}$ (C) $\frac{OC}{OD}$ (D) $\frac{AC}{BD}$

Sides of a triangle are of length 2 cm, 3 cm and 4 cm respectively. the set of numbers which are similar to the above triangle is

(A) 4, 5, 6 (B) 5, 6, 7 (C) 12, 13, 14 (D) 6, 9, 12

14) In fig $\angle ABC = \angle AQP = 90^{\circ}$, then $\frac{AQ}{AB}$

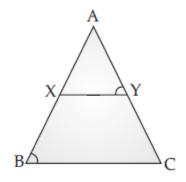


(A)
$$\frac{BC}{PQ}$$
 (B) $\frac{AC}{PQ}$ (C) $\frac{QP}{BC}$ (D) $\frac{AP}{AB}$

- 15) Corresponding sides in equiangular triangle are
 - (A) ಸಮನಾಗಿರುತ್ತವೆ

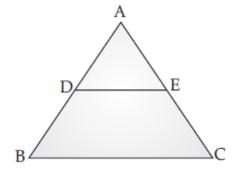
- (B) ಸಮಾಂತರದಲ್ಲಿರುತ್ತವೆ
- (C) ಸಮಾನುಪಾತದಲ್ಲಿರುತ್ತವೆ
- (D) ಆಸಮನಾಗಿರುತ್ತವೆ
- Sides of two similar triangles are in the ratio 2:3. Areas of these triangles are in the 16) ratio
 - (A) 9:4
- (B) 4:9
- (C) 2:3
- (D) 3:2
- Areas of two similar triangles are in the ratio 25: 49. Sides of these triangles are in the ratio
 - (A) 4:6
- (B) 5:7
 - (C) 6:7
- (D) 7:8
- In triangle PQR , \angle PQR = 90°. then the correct relation is 18)
 - (A) $PR^2 = PQ^2 QR^2$
- (B) $PQ^2 = QR^2 PR^2$
- (C) $PR^2 = PQ^2 + QR^2$
- (D) $QR^2 = PQ^2 PR^2$
- Pythagorean triplet among these 19)
 - (A) 3, 4, 5
- (B) 1, 2, 3
- (C) 2, 3, 4
- (D) 9, 10, 14
- Among these which one forms the sides a right angle triangle 20)
 - (A) 3, 6, 9
- (B) 15, 8, 17
- (C) 5, 12, 17 (D) 8, 5, 17
- In the fig, $\angle ABC = 90^{\circ}$, $\angle ADCB = 90^{\circ}$, AD = 8 cm, and CD = 2 cm, then find lenth of BD
 - (A) 4 cm

- (B) 8 cm (C) 16 cm (D) 10 cm


22. In the given figure, $\angle ABC \sim \angle AYX$, then the ratio of the corresponding sides is:

$$\mathbf{A)} \ \frac{\mathbf{AX}}{\mathbf{AC}} \quad = \quad \frac{\mathbf{AB}}{\mathbf{AY}} \quad = \quad \frac{\mathbf{CB}}{\mathbf{XY}}$$

$$\mathbf{B)} \ \frac{\mathbf{AB}}{\mathbf{AY}} \quad = \quad \frac{\mathbf{BC}}{\mathbf{XY}} \quad = \quad \frac{\mathbf{AX}}{\mathbf{AC}}$$

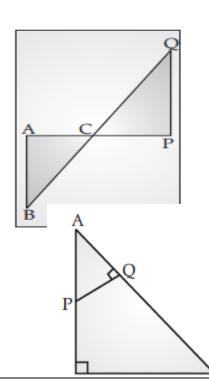

$$\mathbf{C}) \quad \frac{\mathbf{A}\mathbf{B}}{\mathbf{A}\mathbf{X}} \quad = \quad \frac{\mathbf{A}\mathbf{C}}{\mathbf{A}\mathbf{Y}} \quad = \quad \frac{\mathbf{B}\mathbf{C}}{\mathbf{X}\mathbf{Y}}$$

$$\mathbf{D}) \quad \frac{AX}{AC} \quad = \quad \frac{AY}{AB} \quad = \quad \frac{XY}{CB}$$

In the figure, $DE \parallel BC$, AD : AB = 1 : 2, BC = 6 cm, then DE is 23.

- (A) 1 cm
- (B) 2 cm (C) 3 cm (D) 4 cm

In the given figure $\triangle ABC \sim \triangle PQC$. The ratio of their 24. corresponding sides is


$$\mathbf{A)} \qquad \frac{\mathbf{AB}}{\mathbf{PQ}} \qquad = \qquad \frac{\mathbf{BC}}{\mathbf{PC}} \qquad = \qquad \frac{\mathbf{AC}}{\mathbf{QC}}$$

$$\mathbf{B)} \ \frac{\mathbf{AB}}{\mathbf{PC}} \quad = \quad \frac{\mathbf{BC}}{\mathbf{PQ}} \quad = \quad \frac{\mathbf{AC}}{\mathbf{QC}}$$

C)
$$\frac{BC}{PQ} = \frac{AB}{QC} = \frac{AC}{PC}$$

$$\mathbf{D})\,\frac{\mathbf{A}\mathbf{B}}{\mathbf{P}\mathbf{Q}} \quad = \quad \frac{\mathbf{B}\mathbf{C}}{\mathbf{Q}\mathbf{C}} \quad = \quad \frac{\mathbf{A}\mathbf{C}}{\mathbf{P}\mathbf{C}}$$

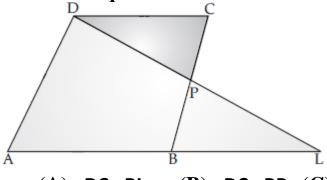
25. In the figure,
$$\angle ABC = \angle AQP = 90^{\circ}$$
, then $\frac{AQ}{AB}$

A)
$$\frac{BC}{PQ}$$
 (b) $\frac{AC}{PQ}$ (c) $\frac{QP}{BC}$ (d) $\frac{AP}{AB}$

(b)
$$\frac{AC}{PQ}$$

(c)
$$\frac{QP}{BC}$$

(d)
$$\frac{AP}{AB}$$


Sides of a triangle are of length 2 cm, 3 cm and 4 cm respectively. **26.** Which of the sets of numbers are the sides of a triangle, similar to the above triangle?

- (A) 4, 5, 6 (B) 5, 6, 7 (C) 12, 13, 14 (D) 6, 9, 12

Select the set of numbers from the following which can form similar 27. triangles

- (A) 9, 12, 18 and 3, 4, 6 (B) 3, 4, 6 and 9, 10, 12
- (C) 8, 6, 12 and 2, 6, 3 (D) 3, 4, 5 and 2, 4, 10

In parallelogram ABCD, P is a point on BC. In \triangle DCP and \triangle BLP, **28. DP**: **PL** is equal to:

- (A) DC:BL
- (B) DC:BP (C) PC:BL
- (D) PC: PL

 \triangle ABC has sides of length 5 cm, 6 cm and 7 cm. The perimeter of \triangle DEF **29.** is 360 cm. If $\triangle ABC \sim \triangle DEF$ then the ratio of the perimeters of $\triangle ABC$ and $\triangle DEF$ is:

- (A) 1:2 (B) 2:1 (C) 1:20 (D) 20:1

(A) 3-4		(B) 2-4 cm	(C) 1-4 cm	(D) 4-4 cm					
-	•	of two similar r areas will be	•	the ratio of 4 : 1,	then				
	6:1		(C) 2:1	(D) 2:1					
 33. Which of the following is a correct statement? (A) All the rectangles are similar (B) All the right angled triangles are similar (C) All the rhombus are similar (D) All the equilateral triangles are similar 									
Altitude of A altitude of A	$\triangle ABC = 6$	cm. If $\triangle \overrightarrow{ABC}$	and area of $\triangle PQ$. $\triangle PQR$, then the	-					
respectively		•	as 120 sq. cm and air of correspond (C) 4 : 1 (D)	ding sides is:					
respectively	. If area of	$\begin{array}{ccc} ABC = 60 \\ (B) & \textbf{30} \end{array}$	id points of AB , sq. cm, then areasq. cm						

 $\triangle ABC \sim \triangle DEF$, $\angle A = \angle D$ and $\angle B = \angle E$, then $\frac{\text{Area of triangle ABC}}{\text{Area of triangle DEF}}$ is

 \triangle ABC ~ \triangle DEF, the area of \triangle ABC is 45 cm² and the area of \triangle DEF

(A) $\frac{AC^2}{DF^2}$ (B) $\frac{AB^2}{DF^2}$ (C) $\frac{AC^2}{EF^2}$ (D) $\frac{BC^2}{DE^2}$

is 20 cm 2 one side of \triangle ABC is 3.6 cm, then the length of corresponding

30.

31.

equal to:

37.	In	D <i>PQR</i>	$, \cdot PQI$	$R = 90^{\circ}$.	The cor	rect rel	ation w	ith resp	ect to	
		(A	$) PR^2 =$	$PQ^2 - Q$	R^2		(B)	$PQ^2 = 0$	QR ² – PR ²	2
		(C)	$PR^2 = PC$	$Q^2 + QR^2$			(D)	$QR^2 = P$	$Q^2 - PR^2$	
	e otl	_		one side en those		_	_		of the sq '' This	uares
	(C) Cor	overse o	s theore of Thale of Pytha	s theor	em	B) Tha	les the	orem	
39.	T	he leng	th of a	diagona	l of a sq	uare of	side 5 c	m is:		
40.									(D) 10 v n of AC	
BD^2 a										
	(A)	$4AB^2$		(B) 4 A	IC ²	(C) 4	BD^2	(D) 4	AO^2	
dista	nce (from (A) 17m A ladd	the star ler 17 m	rting po (B) 15r long re	int. n eaches a	(C) 12 windov	m v of a bi	(D) 23	lculate to 3m 15 m ab uilding is	ove
the g	I UU.	(A)		(B					_	3
		/ERS:	02	(2	, -	(0	,, G	(2) 10		
1		С	11	С	21	Α	31	В	41	Α
2		С	12	Α	22	D	32	Α	42	С
3	3	С	13	D	23	С	33	D		
4		В	14	С	24	D	34	Α		
5		D	15	С	25	С	35	В		
ϵ		Α	16	В	26	D	36	Α		
7		Α	17	В	27	Α	37	С		
8		D	18	С	28	Α	38	D		
S)	С	19	Α	29	С	39	Α		

10

С

20

В

30

Α

40

Α

Points to remember

$$a_1x + b_1y + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$

Where a_1 , a_2 , b_1 , b_2 , c_1 , c_2 are real numbers

Conditions for solvability (or consistency):

Condition	Solution	Graphical	Consistency /
		representatio	Inconsistency
$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Unique solution		

A)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

B)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$C) \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

A)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ C) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ D) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

A)
$$2x - 3y+6 = 0$$
, $2x+3y+6 = 0$

A)
$$2x - 3y + 6 = 0$$
, $2x + 3y + 6 = 0$
B) $3x - 4y - 6 = 0$, $3x - 4y + 6 = 0$

C)
$$x - y + 10 = 0$$
, $x - y + 10 = 0$

C)
$$x - y + 10 = 0$$
, $x - y + 10 = 0$ D) $5x - 10y + 20 = 0$, $5x - 20y + 30 = 0$

6) The inconsistent pair of equations among the following

A)
$$x - y + 3 = 0$$
, $x-y+6=0$

C)
$$3x - 4y + 12 = 0$$
, $x - y + 10 = 0$ D) $5x - 10y + 20 = 0$, $x - 2y + 4 = 0$

- A)unique solution B)infinitely many solutions
- C) no solution
 - D)have two solutions
- A) Consistent pair B) Dependent pair
- C) Inconsistent pair D) Straight pair
- A)unique solution
- B)infinitely many solutions

- C)no solution
- D)have two solutions
- The value of x and y for two equations x+y=5 and 2x-y=4 is 10)
 - A) (2,3) B) (3,2) C) (1,4) D) (4,1)

A) 6 B) 3 C) 4 D) 2

A) 2. B) 4. C) 6. D) 8.

C)coincident D) inconsistent

A) 1 B) 2 C) 3 D) 4

A) 2x - 3y = 9. B) 4x + 6y = 3. C) 6x + 9y = 10. D) 2x + 3y = 9.

ANSWERS:

1	С	7	С	13	С
2	D	8	Α	14	В
3	Α	9	С	15	Α
4	В	10	В	16	В
5	С	11	D		
6	Α	12	D		

Circles

Points to remember

Multiple choice questions

A) 30°

point is

A)1

B) 60°

B)2

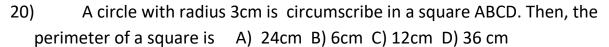
- ❖ The point where a tangent touches the circles is called the point of contact.
- In any circle, the radius drawn at the point of contact is perpendicular to the tangent.
- ❖ Only one tangent can be drawn to a circle at any point on it.
- ❖ Tangents drawn at the ends of a diameter are parallel to each other.
- ❖ Length of tangents from an external point to a circle are equal.

A) Chord B) Secant C) Dangeditus A) Tangent B) Secant C) Radius D) arc of a 3) The maximum number of parallel tangents that can be drawn to a circle is A) 1 B) 2 C) 3 D) Infinitely many 4) The angle subtended between tangent and radius of a circle is

D) 180°

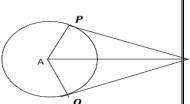
6) The number of tangents to a circle passing through a point lying on the circle is

D) 4


5) The maximum number of tangents that can be drawn to a circle from an external

C) 90°

C) 3


	A) 1	B) 2	C) 3	D)Infinitel	ly many	
7) Tw					center 'O' and <i>i</i>	AB is the
cho	rd of large	r circle which	touches th	ne smaller cir	rcle at P then the	<u>!</u>
	gth of the ch					
	24cm			C) 18cm	D) 8 cm	
•					6cm from an	No S
•	_	hich is 10cm				
	-		C) 10cm	D) 5cm		
•			•	•	s 70° then angle l	between
	ir radii is					
A)	110°	B) 70° C) 60°	D) 100°		
10)	If the angle	between two	radii of a c	ircle is 90°.	the angle betwee	en tangents
		ds of the radi		,	0	.
A) (B) 180°	C) 60°	D) 90°	0	
,		,	-,	,		
11)	The tang	ents drawn at	the ends of	f a diameter o	of a circle are	
A) parallel to				to each other	R
C)intersects to	each other	D) (Coincides to	each other	
12)	A quadrilate	ral ABCD is	drawn to ci	ircumscribe a	e circle.	Q
AB	+CD=					s
A)	AC+CD	B) AD+B0	C ()	AB+BC D)) AB+AD	A P B
13)	PQ is a ta	ngent to a cir	cle with ce	nter 'O' touc	hes the circle at _I	point P then
∠0	PQ =					
A)	30° E	3) 60° (C) 90°	D) 180°	C_{Γ}	P
•	_	BC, CE and El		_		V E
circ	le. If BC = 5	cm, EF = 3cm	, then the l	ength of CE =	В	₹ fr
Α) 3cm b) 5	cm C) 8cm	D) 2 cm			
15)	"D" Is the	e external poi	nt at a dist:	ance of 5cm	from the	A ^Ψ H
•		-			is the tangent to	nuches the
		the length of		Jeni ana i Q	is the tangent to	Acres the
Circ	A) 4cm	B) 7cm	C) 8cm	D) 2cm		
	ry T oni	<i>5)</i> / Cill	C) OCITI	D) ZCIII		

- 16) If TP and TQ are the two tangents to a circle with center 'O' so that ∠POQ = 110° then ∠PTQ =
 - A) 110°
- B) 70°
- C) 60°
- D) 100°
- 17) PQ & PR are tangents to a circle with center 'O' if $\angle QPR = 50^{\circ}$ then $\angle QOR =$
 - A) 130°
- B) 50°
- C) 65°
- D) 90°
- 18) The tangents drawn at the ends of a diameter of a circle are
 - A) parallel to each other
- B)Perpedicular to each other
- C)intersects to each other
- D) Coincides to each other
- 19) In the Figure PB is the tangent to a circle with center 'A' if \angle ABP = 40° then \angle PAB =
 - A) 90°
- B) 50°
- C) 40°
- D) 60°

1	Α	7	D	13	С	19	В
2	Α	8	Α	14	С	20	С
3	В	9	Α	15	Α		
4	С	10	D	16	В		
5	В	11	В	17	Α		
6	Α	12	В	18	Α		

110°

Constructions

A)Om Dom C)Om Dom

A)3cmಮತ್ತು 7cm B) 4cm ಮತ್ತು 6cm

C) 4.6cm ಮತ್ತು 5.4cm D) 4.2cm ಮತ್ತು 5.8cm

- 3) Construct a triangle of with sides 6cm, 9cm and 7.5cm respectively. Then construct another triangle similar to the given triangle such that each of its sides are $\frac{2}{3}$ of the corresponding sides of given triangle. The lengths of the new triangle respectively are
 - A) 4cm, 6cm, 8cm
- B) 4cm, 6cm, 10cm
- C) 4cm , 7cm , 6cm
- D) 4cm, 6cm, 5cm

ASWERS:

1	2	3
С	В	D

Coordinate geometry

Points to remember

1. Distance between $P(x_1, y_1) \& Q(x_2, y_2)$ is given by

d =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2. Distance between origion and a point P(x, y) is given by

$$d = \sqrt{x^2 + y^2}$$

$$(x, y) = \left[\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right]$$

$$= \left[\frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2} \right]$$

5. Area of a triangle with vertices (x_1, y_1) , (x_2, y_2) & (x_3, y_3) is

$$\Delta = \frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$$

Multiple questions

1) The distance between $(X_1, Y_1) \& (X_2, Y_2)$ is

A)
$$\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$
 B) $(X_2 - X_1)^2 + (Y_2 - Y_1)^2$ C) $\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$ D) $(X_2 - X_1)^2 + (Y_2 - Y_1)^2$

B)
$$(X_2 X_1)^2 + (Y_2 Y_1)^2$$

C)
$$\sqrt{(X_2 - X_1) + (Y_2 - Y_1)}$$

D)
$$(X_2 - X_1) + (Y_2 - Y_1)$$

The distance of a point (X,Y) from the origin is 2)

A)
$$X^2 + Y^2$$

A)
$$X^2 + Y^2$$
 B) $\sqrt{X^2 + Y^2}$ C) $X^2 - Y^2$ D) $\sqrt{X^2 - Y^2}$

C)
$$X^2 - Y^2$$

D)
$$\sqrt{X^2 - Y^2}$$

	$\left(\frac{X1+Y1}{2}, \frac{X2+Y2}{2}\right)$					$B)\left(\frac{X1-Y1}{2}\;,\frac{X2-Y2}{2}\right)$					
	C) $\left(\frac{x^2+x^1}{2}\right)$	$\frac{y^2+y^1}{2}$)		D) $\left(\frac{x}{x}\right)$	$D)\left(\frac{x2-x1}{2},\frac{y2-y1}{2}\right)$					
4)	The distan	ce betwe	en the	e coordii	nates (3,4) froi	m its oı	rigin is			
	A) 6 unit	S,	B) 5 u	ınits	C)	10 units	5	D) 8 u	nits		
5)	The dista	nce betw	een th	ne coord	linates	(8,3) an	ıd (5,7)	is			
	A) 5 units	5	B) 11	units	C) 2	2√2 unit	:S	D) 4 u	nits		
	A) (5, 3)	В	(-3, 7	')	C) (8	3,1)	D) (:	16,2)			
7)	The coord	inates of	the e	nd point	s of a d	diamete	r of a c	ircle ar	e (6,2)	& (6,4)	. Then
the o	coordinates o	of the cer	nter of	f the circ	le are						
	A) (4,5)	В	6) (6,3)	C) (5,	4)	D) (1	0, 8)			
	A) ±7	B) ±4	ļ.	C) 0	D) ±	± 3					
9) T	he coordinat	es of the	point	which c	divides	the join	of (3,2	2) & (0,!	5) in th	ne ratio	2:1
	are	A) (1,	4)	B)(4,1	L) C)(3	3,7) D)	(7,3)				
	(X_{3}, Y_{3}) is										
	A) 1 sq.u	nits	B) 0	sq.units	S	C) 100	o sq.un	its	D) -1	sq.units	;
	A) 4	B) 5	C)	- 1	D) 3	$3\sqrt{3}$					
	12.0.4	D) 0			2	D) 4.0					
	A) 3:4	B) 3	:2	C) 2:3	3	D) 4:3					

15) The area of a triangle with vertices (1,-1) (-4,6) & (-3,-5) is

A) 24 sq.units

B) 40 sq.units

C) 48 sq.units

D) 32 sq.units

The distance of the point P(2, 7) from the x - axis is _____ 16)

A) 2 units

B) 7 units

C) 9 units

D) 11 units

The distance of the point Q(6, 2) from the Y – axis is 17)

A) 2 units

B) 4 units C) 6 units D) 8 units

Co-ordinates of origin are. 18)

A) (1, 1)

B) (1, 0)

C) (0, 1)

D) (0, 0)

 $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ is

A).
$$\frac{1}{2}$$
 [x₁ (y₂ +y₃) + x₂ (y₃ + y₁) + x₃ (y₁ + y₂)

B).
$$\frac{1}{2}$$
 [x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂)]

C).
$$\frac{1}{2}$$
 [x₁ (y₂ - y₃) - x₂ (y₃ - y₁) - x₃ (y₁ - y₂)]

D).
$$\frac{1}{2}$$
 [x₁ (y₂ + y₃) - x₂ (y₃ + y₁) - x₃ (y₁ + y₂)]

A).
$$\left[\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right]$$

A).
$$\left[\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right]$$
 B). $\left[\frac{m_1x_2-m_2x_1}{m_1+m_2}, \frac{m_1y_2-m_2y_1}{m_1+m_2}\right]$

(C) . $\left[\frac{m_1}{n}\right]$	$\frac{x_2+m_2x_1}{n_1-m_2}$	$, \frac{m_1y_2+}{m_1-}$	$\left[\frac{m_2y_1}{m_2}\right]$	D). $\left[\frac{m_1}{m_2}\right]$	$\frac{x_2-m_2x_1}{m_1-m_2}$	$, \frac{m_1y_2}{m_1}$	$\begin{bmatrix} -m_2y_1 \\ -m_2 \end{bmatrix}$	
21) T					es are A 2 units		B (3 , 5) a inits	nd C (2 ,	4) is	
22) axis is		oendicul	lar distaı	nce of p	oint A (6	, 9) fror	n the x-a	axis and	у-	
A	4) 6 unit	s, 9units	3		B) 9	9 units ,	6units			
(C) 6 unit	s ,15 uni	its		D)	15 units	, 9units			
23)	The coordinates of the point on the x- axis will be in the form									
	A) (0, y	') I	(x, 0)		C) (0,	, 0)	D) (x, y)		
24)			-		•		e in the f	Form) (x, y)		
25)						C) (0, 0) C) 2				
	X-coord	dinate or	n y-axis	is		2		D) 3		
27)	The poi	nt amon	_	llowing	which li		D) 0 axis is (2, 3)	D)	(0, 2)	
28)	The poi		g the fol	llowing	which li	e on y-				
ANS	SWERS:	(3, 0)		D) ((O, 1)	C)	(2, 0)	D)	(4, 0)	
1	Α	7	В	13	D	19	В	25	Α	
2	В	8	В	14	Α	20	Α	26	D	
3		9	Δ	15	Δ	21	R	27	Δ	

16

17

18

В

С

D

В

C

С

22

23

24

В

В

Α

28

В

4

5

6

В

Α

С

10

11

12

Quadratic equations

Points to remember

- **1. Standard form of a quadratic equation is** $ax^2 + bx + c = 0$, $a \ne 0$
- 2. Quadratic formula to find roots of $ax^2+bx+c=0$ are

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 3. Nature of roots of a quadratic equation
 - The discriminant to find nature of roots of a quadratic equation $ax^2+bx+c=0$ is given by $\Delta = b^2-4ac$
 - If $\Delta = b^2 4ac = 0$ then roots are real and equal.
- iii. If $\Delta = b^2 4ac > 0$ (+ve) then roots are real and distinct.
- iv. If $\Delta = b^2 4ac < 0$ (-ve) No real roots.
 - 1. Which of the following is not a quadratic equation

A)
$$X^2+3x-5=0$$

$$(B)x^2+x^3+2=0$$

$$(C)3+x+x^2=0$$

(B)
$$x^2+x^3+2=0$$
 (C) $3+x+x^2=0$ (D) $x^2-9=0$

- 2. The quadratic equation has degree
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- 3. The standard form of a quadratic equation is

A)
$$ax^2 + bx + c = 0$$
 B) $ax + b = c$ C) $ax^3 + bx^2 + c = 0$ D) $ax - b = 0$

B)
$$ax + b = 0$$

C)
$$ax^3 + bx^2 + c = 0$$

D)
$$ax - b = 0$$

4. Pure quadratic equation among the following is

A)
$$x^2 + 2x + 2 = 0$$
 B) $x^2 + 5x + 6 = 0$

B)
$$x^2 + 5x + 6 = 0$$

C)
$$x^2 + 9 = x$$

D)
$$x^2 - 9 = 0$$

5. Sridhara's quadratic formula for the quadratic equation $ax^2 + bx + c = 0$ is

				on $ax^2 + bx + c = 0$ is
A) $b^2 - 4$	ac	B) $\frac{b}{2a}$	C) $\frac{b}{2a}$	D) $\frac{-b}{4ac}$
7. The maximu	ım number	of roots of a q	uadratic equation	n is
A) one	B) two	C) three	(D) depen	ds on the given equati
8. Sum of a nu	umber and it	ts reciprocal is	s 17/4, the number	er is
A) 4	B) 3	C) 5	D) 2	
9. The values	of X in giv	ven Quadratio	equation X ² +1=3	101 are
A) ±1	B) ±10	C) ±11	D) $\pm\sqrt{1}$	$\overline{0}$
10.The roots o	f the Quadra	ntic equation >	κ²=49 are	
A) 7 and -7	B) 2	4 and 5	C) 8 and -8	D) 7 and 0
11. If the roo	ts of the equ	uation ax ² + b	x + c = 0 are ed	jual, then the value of
A) b ² - 4a		B) b ² X 4a	C) $\frac{b^2}{4a}$	D) $\frac{4a}{b^2}$
12. The discrin	ninant of the	e given quadr	atic equation 2x ²	-4x + 3 = 0 is
A)-8	B)8	C)0	D)1	
	of the quad	ratic equation	$1 x^2 + mx + 4 = 0$ ar	e equal, then the value
is				
A) 2	B) 4	C) 6	D) 5	

14. "The product of two consecutive positive integers is 30" this statement can be

expressed as

A) x(x+2) = 30 B) x(x-2) = 30 C) (x-3)x = 30 D) x(x+1)=30

15. Which of the following is an example for quadratic equation

A)
$$x(x+3) + 5 = x^2$$

B)
$$x(x-3)=5$$

A)
$$x(x+3) + 5 = x^2$$
 B) $x(x-3) = 5$ C) $2x^2 + 2x = 2(x^2 - 5)$ D) $(x+1)x = x(x-3)$

$$D)(x+1)x=x(x-3)$$

16. The nature of roots of the equation $x^2 + 4x + 4 = 0$ is

- A) Real and Equal
- B) Real and distinct
- C) No real
- D) Different roots

17. " The sum of squares of two consecutive odd positive integers is 34" this can expressed as

A)
$$x^2 + (x+1)^2 = 34$$
 B) $x^2 + (x+3)^2 = 34$

B)
$$x^2 + (x+3)^2 = 34$$

C)
$$(x+1)^2 + (x+2)^2 = 34$$
 D) $x^2 + (x+2)^2 = 34$

D)
$$x^2 + (x+2)^2 = 34$$

18. If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$, then the value of p is

19. The sum of the reciprocals of Rehman's ages 3 years ago and 5 years from now is 1/3. The present age of Rehman is:

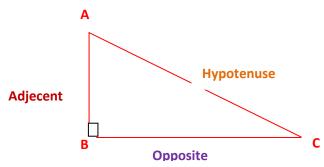
20. What number should be added to x^2+6x to make it a perfect square?

A) 36

(B) 18

(C) 9

(D) 72


ASWERS:

1	В	6	Α	11	С	16	Α
2	С	7	В	12	Α	17	D
3	Α	8	Α	13	В	18	С
4	D	9	В	14	D	19	Α
5	D	10	A	15	В	20	A

UNIT: TRIGONOMETRY

Points to remember

TRIGONOMETRIC RATIOS:

SinA	CosA	TanA	CosecA	SecA	CotA		
Opposite Hypotenuse	Adjecent	Opposite	Hypotenuse	Hypotenuse	Adjecent		
	Hypotenuse	Adjecent	Opposite	Adjecent	Opposite		

TRIGONOMETRICAL RATIOS TABLE FOR STANDARD ANGLES

∠A	00	30 ⁰	45 ⁰	60°	90°
SinA	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
CosA	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
TanA	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N.D
CosecA	N.D	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
SecA	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	N.D
CotA	N.D	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

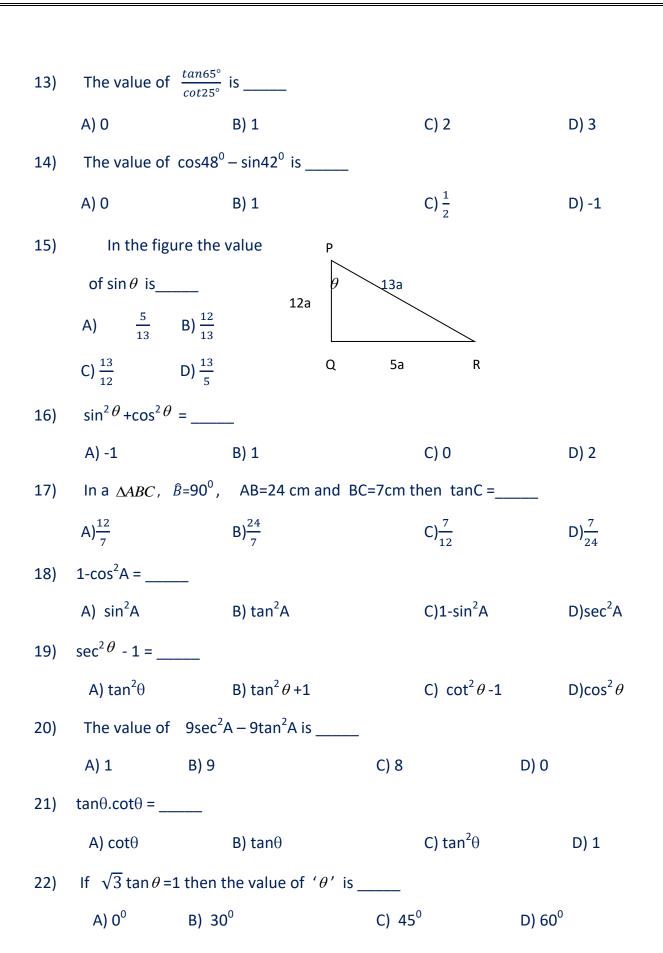
TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

SinA	CosA	TanA	CosecA	SecA	CotA
Cos(90-A)	Sin(90-A)	Cot(90-A)	Sec(90-A)	Cosec(90-A)	Tan(90-A)

TRIGONOMETRIC IDENTITY

$$\rightarrow$$
 Sin²A + Cos²A = 1

$$\rightarrow$$
 Tan²A + 1 = Sec²A


$$\rightarrow$$
 1 + Cot²A = Cosec²A

INVERSE OF TRIGONOMETRIC VALUES

1 SinA	CoSecA
$\frac{1}{CosA}$	SecA
$\frac{1}{TanA}$	CotA
1 CosecA	SinA
$\frac{1}{SecA}$	CosA
$\frac{1}{CotA}$	TanA

SOME IMPORTANT MULTIPLE CHOICE QUESTIONS

1.	The value of tan45 ⁰ is	S			
	A) $\sqrt{3}$		C) 1		D) $\frac{1}{\sqrt{3}}$
2.	If $2\sin 2\theta = \sqrt{3}$ then t A) 90°	the value of ' θ B) 60^{0}	' is C) 30 ⁰		D) 45 ⁰
3.	$\sin(90-\theta)$ is equal to A) $\cos\theta$		θ C) $\sec \theta$		D) $\cot \theta$
4.	$\tan \theta - \cot(90 - \theta)$ is e		C) 2	D) 3	
5.	A) 0 B) 1 If $\sin \theta = \frac{x}{y}$ then the		C) 2 is	D) 3	
	A) $\frac{y}{\sqrt{y^2-x^2}}$ If $13\sin\theta = 12$ then		• •		$D) \frac{\sqrt{y^2 - x^2}}{y}$
0.	A) $\frac{5}{12}$ B) $\frac{13}{5}$			D) $\frac{13}{12}$	
7.	The value of Sin30 ⁰ +	cos60 ⁰ is	_		
	A) 1	B) $\frac{3}{2}$	C) $\frac{1}{4}$		D) $\frac{2}{3}$
8)	The value of sin60 ⁰ . c	$\cos 30^{\circ} + \sin 30^{\circ}$.	cos60° is		
	A) 4	B) 3	C) 2		D) 1
9)	If $tanA = \frac{4}{3}$ then co	tA =			
	A) $\frac{4}{3}$ The value of tan45 ⁰	B) $\frac{3}{4}$	J		D) $\frac{5}{3}$
	A) 3	B) 2	C) 1		D) 0
11)	The value of $\frac{sin18^{\circ}}{cos72^{\circ}}$ i	S			
	A) 0	B) 1	C) 2		D) 3
12)	The value of $\frac{tan26^{\circ}}{cot64^{\circ}}$	is			
	A) 0	B) 1	C)2		D)3

23)	The value of	$\sin^2 30^0 - \cos^2 30^0$ is	-	
	A) $-\frac{1}{2}$	$B)\frac{\sqrt{3}}{2}$	$C)\frac{3}{2}$	D) $-\frac{2}{3}$
24)	The value of	$\frac{1-tan^2 \ 45^{\circ}}{1+tan^2 \ 45^{\circ}}$ is		
	A) tan90 ⁰	B) 1	C) sin45 ⁰	D)0
25)	If we expres	s $\operatorname{cosec} heta$ in the form of $\mathfrak c$	$\cot \theta$, then $\csc \theta$ =	=
	A) $\cot \theta$	B) $\cot^2 \theta - 1$	C) $\sqrt{1+a}$	$\cot^2 \theta$ D) $1+\cot^2 \theta$
26)	If $sinA = \frac{1}{2}$	and $\cos B = \frac{1}{2}$ then A	+ B =	
	A) 0 ⁰	B) 30°	C) 60 ⁰	D) 90°
27)	In a $\triangle ABC$ if α	$\hat{c} = 90^{\circ}$, then sin(A + B)=		
	A)0	B) $\frac{1}{2}$	C) $\frac{1}{\sqrt{2}}$	D)1
28)	If $\sin \theta = \frac{1}{2}$ a	nd $\cos \theta = \frac{\sqrt{3}}{2}$, then $\tan \theta$	=	
	A)√3	B) $\frac{1}{2}$	C) $\frac{\sqrt{2}}{3}$	D) $\frac{1}{\sqrt{3}}$
29)	In a $\triangle ABC$ $\hat{B}=$	90° tanA= $\frac{1}{\sqrt{3}}$, then sin.	A=	
	A) 0	B) $\frac{1}{2}$	C) $\frac{\sqrt{3}}{2}$	D) $\frac{1}{\sqrt{2}}$
30)	In sinA, $0 \le$	$A \leq 90^{\circ}$ then the least	t value of sinA is	
	A)-1	B)0	C) $\frac{1}{\sqrt{2}}$	D) $\frac{1}{2}$
31)	If sin2A = 2si	inA then the value of A i	s	
	A) 30 ⁰	B) 45 ⁰	C) 0 ⁰	D)90 ⁰
32)	In a $\triangle ABC$, \hat{B}	=90° and \hat{c} =30° then A	B : AC is	
	A) 1:2	B) 2:1	C) $\sqrt{3}$: 2	D) 2 : $\sqrt{3}$

If tanA = cotB, then A + B =_____ 33)

A) 90⁰ B)60⁰

C) 30^0 D) 0^0

34) The value of $tan1^0.tan2^0.tan3^0....tan89^0$ is _____

A) 0

B)1

C)2

D) $\frac{1}{2}$

35) $\frac{2tan30^{\circ}}{1+tan^2 30^{\circ}} =$ _____

A) sin60⁰ B)cos60⁰

C)tan60⁰ D)sin30⁰

 $\frac{1+tan^2A}{1+cot^2A} = \underline{\hspace{1cm}}$ 36)

A) sec^2A B) -1

C) cot²A

D) tan²A

37) If sinA - cosA = 0 then the value of $sin^4A + cos^4A$ is _____

A) 2

B)1

C) $\frac{3}{4}$ D) $\frac{1}{2}$

38) if $\sin\theta + \sin^2\theta = 1$ then the value of $\cos^2\theta + \cos^4\theta$ is _____

A) -1 B) 1 C)0

D) 2

ANSWERS:

1	С	11	В	21	D	31	С
2	С	12	В	22	В	32	Α
3	Α	13	В	23	Α	33	Α
4	Α	14	Α	24	D	34	В
5	D	15	В	25	С	35	Α
6	D	16	В	26	D	36	D
7	Α	17	В	27	D	37	D
8	D	18	Α	28	D	38	В
9	В	19	Α	29	В		
10	С	20	В	30	В		

12. Applications of trigonometry

Multiple choice questions

1) The shadow of a tower is equal to its height at 10-45 a.m. The sun's altitude is $(A)30^{\circ}$ $(B)45^{\circ}$ $(C)60^{\circ}$ $(D)90^{\circ}$

3) The angle of elevation of the top of a tower from a point 20 metres away from its base is 45°. The height of the tower is

(A) 10 m

(B) 20 m

(C) 30 m

(D) 20_V3 m

4) If the length of the shadow of a tower increases, then the angle of elevation of the sun

(A) is also increases

(B) decreases

(C) remains unaffected

(D) increases then decreases

5) The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will

(A) also get doubled

(B) will get halved

(C) will be less than 60°

(D) 30°

6) If a pole 6m high casts a shadow $2\sqrt{3}$ m long on the ground, then the sun's elevation is (A) 60° (B) 45° (C) 30° (D)90°

7)

ANSWERS:

1	2	3	4	5	6	7
В	С	В	В	С	A	A

Statistics

Points to remember

1. Mean for groupd data

Direct method to find mean

mean,
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

- 2. Mode for grouped data = $\left[L + \left[\frac{f_{1-}f_0}{2f_{1-}f_0-f_2}\right]X h\right]$
- 3. Median for grouped of $= \left[L + \left[\frac{\frac{N}{2} cf}{f} \right] X h \right]$

Multiple choise questoins

- 1) If the mean value of 'x',6,8,9 and 12 is 8, then the value of 'x' is
 - A) 4
- B) 5
- C) 16
- D) 10
- 2) The median of the scores 5,8,14,16,19 and 20 is
 - A) 14
- B) 15
- C) 16
- D) 17
- 3) The wickets taken by a bowler in 10 cricket matches are as follows:
- 2,6,4,5,0,2,1,3,2,3 then the mode of the data is
 - A) 0
- B)1
- C) 2
- D)3
- 4) The emperical relationship between the three measures of central tendency is
 - A) 3 median = mode + 2 mean
- B) 2 median = mode + 3 mean
- C) median = mode + mean
- D) median = mode mean
- 5) Class mark for the class 10 25 is

	A) 10).5			B)12.5			C)	C)15.5			D)	17.5				
6)	Size	of th	e clas	s inte	erva	ıl 40-5	0 is										
ಗಾತ್ರ	A)	10		E	3) 1	5	C	20		D)	25						
7)	Mod	lal cla	ass for	r the	give	en dist	ribu	ution	is								
			CI		1-3	3	3-5		5-	7	7-9		9-1	.1			
			F		7		8		2		2		1				
	A) 1-	3	В)	3-5			C	C) 5-7			D	9-12	1		I		
8)	The	frequ	iency((f ₀) o	fcla	iss pre	ced	ling tl	ne m	nodal	class	for th	ne gi	ven d	istrik	outic	n is
		C	ı	5-15	;	15-2	5	25-3	35	35-	-45	45-	·55	55-	-65]	
	-	f		6		11		21		2		1	4		5		
	_ A) 6		 B)	11		C) 2	1		D) 2	23							
9)		frequ			of cl	ass su		eding	•		al clas	s for	the	given	dist	ribut	ion is
					.		1 _										
				C		1-3	-	3-5	5- 		7-9	9-1					
	• • •		5.	F		7	<u> </u>	8	2		2	1					
10\	A) 7	اء اء : ءء،	B)			C) 2			D) 1								
10)						in an o		_					D/ D				
11\						1edian							D) K	ange			
11)	A) 5	шеаг		7	/e c	dd nat C) 9		ii pos	D) 2		gers is	•					
12)	•	sum i			AC (of all t		hsar	•		ividad	hv t	ha ta	ntal n	umh	ar of	:
12)			ions is		C3 (Ji ali ti	iie c	JUSCI	vati	Jiis ui	ivided	Бу С	iie tt	Jiai II	umb	CI ()I	
	A) Ra				an	C) N	∕led	lian	D)	Mode	e						
13)		_		-		y is u						ne					
-,		near		7		B) me					C) mc			(D) r	ange	Э	
	` '				,	,				`	•			` '	J		

	(A) mean	(B)	median	(C)	mode	(D) rar	ige		
15) Cla	assmark of	the class 1	0 – 20 is						
	A	A) 10	B) 20	C) 15	5	D) 30				
16	6) Size of the class interval 25-35 is									
	А) 25	B) 10	C) 35	5	D) 15				
17) Mo	de for the	data 12,15	5,14,13,12,	15,18,25,16	5,15,20,18				
	A)1	5 B) 18	C) 12 D)	25					
18) Mo	dal class fo	or the distril	oution						
	C.I	0-10	10-20	20-30	30-40	40-50	50-60	60-70		
	f	3	5	8	12	10	6	4		
		A) 20 –	30	B) 30 – 4	·0 C)	40 - 50		50 - 60		
19) For	mula to fin	d median is	S						
	,	A) $L \neq \left[\right]$	$\left[\frac{\frac{N}{2}-cf}{f}\right]Xf$	h	B) <i>L</i> +	$\frac{\frac{N}{2}+cf}{f}\bigg]X$	Th			
	C) $L + \left[\frac{f_{1-}f_0}{2f_{1-}f_0 - f_2} \right] X h$ D) $L + \left[\frac{f_{1-}f_0}{2f_{1-}f_0 + f_2} \right] X h$									
20) Me	dian class f	for the distr	ibution						
	C.I	0-10	10-20	20-30	30-40	40-50	50-60	60-70		
	f	3	8	16	28	38	46	50		
<u> </u>	Δ) 20	- 30	B) 30 - 40) () /	10 – 50	D) 5	60 - 60			
	71,20		טן טט דו	<i>C</i>) -	10 50	טן ט	00			
21	•		Collowing so	,		•	00			

The formula used to find mode of the grouped data

Which of the following is not a measure of central tendency

14)

22)

A)
$$l + \left[\frac{n/2 - cf}{f}\right] x h$$
 B) $\frac{\sum fixi}{\sum fi}$ C) $l + \left[\frac{f1 - f0}{2f1 - f0 - f2}\right] x h$ D) $l + \left[\frac{f1 - f0}{2f1 - f0 - f2}\right]$

- 23) If the median is 36 and mean is 18, then the value of the mode is
 - A) 36
- B) 72
- C) 18
- D) 648
- 24) If the mean of 12 numbers is 20 then their algebraic sum is
 - A) 200
- B) 32
- C) 240
- D)180

25) If
$$\sum f_i = 20$$
, $\sum f_i x_i = 140 + 5k$ and $\overline{X} = 9$ find K

- A) 2
- B) 4
- C) 8
- D) 6

- 26) The Median of 13,12,5,8,11,9 is
 - A) 5
- B) 6.5
- C) 10
- D) 9.5
- 27) For the given frequency distribution table answer the following question

C-I	F
Marks scored	No of Students
0-10	11
10-20	9
20-30	8
30-40	12
40-50	10
50-60	10

- i. The modal class is
 - A) 50-60
- B) 30-40
- C) 0-10
- D) 20-30
- ii. upper limit of the modal class is
 - A) 20
- B) 30
- C) 40
- D) 50
- iii. Value of 'h' (class mark of modal class) is
 - A) 10
- B) 20
- C) 30
- D) 40

iv. The number of Students who scored more than 40 marks

A) 32

B) 12

C) 20

D) 17

ANSWERS:

1	В	7	В	13	В	19	А	25	С
2	В	8	С	14	D	20	В	26	С
3	С	9	С	15	С	21	С	27(i)	В
4	Α	10	В	16	В	22	С	27(ii)	С
5	D	11	Α	17	Α	23	В	27(iii)	Α
6	A	12	В	18	В	24	С	27(iv)	С

Surface area and volume

Points to remember

List of formulae

	1	1		
Sl.	Solid	C.S.A	T.S.A	Volume
1	Cube	$4a^2$	$6a^2$	a^3
2	Cuboid	2lb + 2lh	2lb + 2lh + 2bh	lbh
3	Cylinder	$2\pi rh$	$2\pi r^2 + 2\pi rh$	$\pi r^2 h$
4	Cone	$\pi r l$	$\pi r^2 + \pi r l$	$\frac{1}{3}\pi r^2 h$
5	Frustum of cone	$\pi(r_1+r_2)l$	$\pi r_1^2 + \pi r_2^2 + \pi (r_1 + r_2)l$	$\frac{1}{3}\pi(r_1^2 + r_2^2 + r_1r_2)h$
6	Sphere	$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
7	Hemisphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$

Important points

- Area of combination of solids is the sum of areas of visible faces.
- Volume of combination of solids is the sum of its constituent solids.
- A solid is converted from one shape in to another, their volumes remain same.

Multiple choice questions.

- If the area of the circular base of a cylinder is 22 cm² and its height is 10 cm, then 1) the volume of the cylinder is
 - A) 2200 cm²
- B) 2200 cm³
- C) 220 cm³ D) 220 cm²

2) rac	The formula used $\frac{1}{1}$ are $\frac{1}{1}$ and $\frac{1}{1}$ and $\frac{1}{1}$		surface area of the	frustrum of a cone whose
	= =	•	C) π(r ₁ x r ₂)	D) $\pi(r_1 \div r_2)$ l
3)				he volume of the resulting
cul	ooid is	•		
	A) 27cm ³	B) 54cm ³	C) 108cm ³	D) 216cm ³
4)	The volume of a c	ylinder is 300m³ the	en the volume of a	cone having the same
rac	lius and height as th	at of the cylinder is		
	A) 900 m ³	B) 600 m ³	C) 150 m ³	D) 100 m ³
5)	If two solid hemis	phere of same radi	us are joined toget	her along with their bases
. Tl	nen the surface area	of their new solid i	S	
	A) $2 \pi r^2$	B) $3 \pi r^2$	C)4 πr ²	D) 6 πr ²
6)	Volume of a sphe			
	A) $\frac{3}{4} \pi r^3$	B) $\frac{3}{2} \pi r^3$	C) $\frac{2}{3} \pi r^3$	D) $\frac{4}{3} \pi r^3$
7)	A cylinder and a c	one are of same ba	se , radius and of s	ame height . The ratio of
the	volume of the cylin	der to that of the co	one is	
	A) 2:1 B) 3:	1 C) 2:3	3 D) 3:2	
8)	The curved surface	e area of a right cir	cular cylinder is 44	0 cm ² and its radius is 7cm,
its	height is			
	A) 3.5 cm	B) 7cm	C) 10cm	D)14cm
9)	A cylindrical pend	cil sharpened at one	e edge is the combi	nation of
	A) Two cylinders			
	B) A hemisphere ar	•		
	C) Frustrum of a co	-		
	D) a cone and a cyli			
10			_	d radius of base 6 cm is
res	shaped into sphere, t	•	•	
	A) 3 cm	B)6cm	C) 12cm	D)24 cm
11	_	of a sphere of radiu		2
	A) 154cm ²	B)308cm ²	C) 616cm ²	D) 770cm ²
	A) Cuboid	B) Cylinder	C) Sphere	D) Rightcircular cone

13) <i>A</i>	A toy is in t	he form	of a cone	mounted	d on a hei	misphere	of same	radius . The to	otal	
	e area of t	_								
Д	\) πrl+2πr²	E	3) πrl+πr²		C)2 πrl+π	r²	D) 2πrl+	$2\pi r^2$		
		a								
14)	Formul	a to find	volume o	f a cylin						
	A] $\pi r^2 h$	ı			$\mathbf{B}] \frac{1}{3}\pi$	r^2h				
	C] πrl				\mathbf{D}] 2π	rh				
15)	The solid v	vhich is h	aving onl	y one sur	face is					
	A] Spher	e	B] Her	nisphere	C] Cy	linder	D] Co	one		
16)	The ratio	of areas	of two spl	heres with	h the ratio	of their	radii 2:3	is		
	A] 2:3	B] 3	:2	C] 4:9	D] 16:	9				
17) I	Formula	to fin	nd total	l surfa	ce are	a of	a	hemisphere	is	
ŕ	A] πr^2							1		
18)	A Constitu	ent solids	in the gi	ven comb	oination o	of solid fi	gure are		^	
	A]cylinder, cone B] Cylinder, cone, hemisphere C] Cylinder, cone, sphere D] cube, cone, hemisphere									
	•		e , sphere		-			_		
	•		e , sphere		-			_		
	C] Cylino	ler , cone		· I	O] cube,	cone , h	emispher	_		
	C] Cylino The leng	ler , cone	e, sphere h edge of (B) 11c	a cube w	D] cube ,	cone , h	emispher 1 cm³ is	_		
	C] Cylino The leng	ler, cone	h edge of	a cube w	D] cube ,	cone, h	emispher 1 cm³ is	re		
19)	C] Cylino The leng	th of each	h edge of (B) 11c	a cube w	C) cube , ith its vol (C)	lume 133	emispher 1 cm³ is	re		
19)	C] Cylind The leng (A) 12	th of each	h edge of (B) 11c	a cube w m	C) cube , ith its vol (C)	lume 133 15cm	emispher 1 cm ³ is (D)	re		
19)	The leng (A) 12	th of each	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm ³ is (D)	re 13cm		
19)	The leng (A) 12	th of each	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm ³ is (D)	re 13cm		
19)	The leng (A) 12	th of each	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm ³ is (D)	re 13cm		
19) 20)	The leng (A) 12 A solid for A) Cuboid	th of each	h edge of (B) 11c evolving a B) Cylinde	a cube w m a side of a	ith its vol (C) a rectang C) Sphere	lume 133 15cm le is	emispher 1 cm³ is (D) D) Right	re 13cm		
19)	The leng (A) 12 A solid for A) Cuboid	th of each	h edge of (B) 11c	a cube w m	cube, ith its vol (C)	lume 133 15cm	emispher 1 cm ³ is (D)	re 13cm		
19) 20)	The leng (A) 12 A solid for A) Cuboid	th of each cm med on r	h edge of (B) 11c evolving a B) Cylinde	a cube w m a side of a	ith its volume (C) a rectang C) Sphere	lume 133 15cm le is	emispher 1 cm³ is (D) D) Right	re 13cm		
19) 20) 1 2	The leng (A) 12 A solid for A) Cuboid Answe	th of each cm med on r	h edge of (B) 11c evolving a B) Cylinde	a cube w m a side of a	cube , ith its vol (C) a rectang C) Sphere	lume 133 15cm le is 16 17	emispher 1 cm³ is (D) D) Right	re 13cm		

is