MATHEMATICS ONLINE CLASS X ON 04-08-2021

CIRCLES

Answers to assignments of previous class

1) In the figure, O is the centre of the circle and $A B C$ is an equilateral triangle. Find $\angle B A C$ and $\angle A B O$

Since $\triangle \mathrm{ABC}$ is an equilateral triangle
$\angle A=\angle B=\angle C=60^{\circ}$

$\angle B A C=60^{\circ}$
$\angle B O C=2 \times \angle B A C=2 \times 60^{\circ}=120^{\circ}$
In $\triangle \mathrm{OBC}, \mathrm{OB}=\mathrm{OC}$

$$
\therefore \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{180^{\circ}-120^{\circ}}{2}=\frac{60^{\circ}}{2}=30^{\circ}
$$

$\angle \mathrm{ABO}=\angle \mathrm{ABC}-\angle \mathrm{OBC}=60^{\circ} \div 30^{\circ}=30^{\circ}$
2) In the picture O is the centre of the circle and A, B, C are points on it . Prove that $\angle \mathrm{OAC}+\angle \mathrm{ABC}=90^{\circ}$

In the figure, O is the centre of the circle and A, B, C are points on the circle.
Let $\angle \mathrm{ABC}=\mathrm{x}$ and $\angle \mathrm{OAC}=\mathrm{y}$
Angle made by an arc at its alternate arc is half the central angle of the arc.
Therefore, $\angle A O C=2 \times \angle A B C=2 x$.
 Join OC.
OA and OC are radii of the circle $. \therefore \mathrm{OA}=\mathrm{OC}$
$\triangle O A C$ is an isosceles triangle.
$\therefore \angle \mathrm{OAC}=\angle \mathrm{OCA}=\mathrm{y}$
In any triangle, sum of all angles $=180^{\circ}$

$$
\begin{aligned}
2 x+y+y & =180^{\circ} \\
2 x+2 y & =180^{\circ} \\
2(x+y) & =180^{\circ} \\
x+y & =\frac{180^{\circ}}{2}=\mathbf{9 0}^{\circ}
\end{aligned}
$$

\therefore we get $\angle \mathrm{ABC}+\angle \mathrm{OAC}=90^{\circ}$

Constructions

I. Constructions of angles which cannot be directly measured using protractor .

1. Draw an angle of measure $\left(22 \frac{1}{2}\right)^{0}$

Here we can apply the ideas
"Angle made by an arc at its alternate arc is half the central angle of the arc."
Steps:
First draw a circle of any radius.
Draw a radius of the circle.
Measure 45° at the centre of the circle based on this radius using protractor. Mark any point P on

the larger part of the circle other than A and B. Join AP and BP. $\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 45^{\circ}=\left(22 \frac{1}{2}\right)^{0}$
2. Draw an angle of measure $\left(11 \frac{1}{4}\right)^{0}$

Draw the figure as same in the previous construction.
Draw another circle with centre at P as shown in the
figure. Complete the construction as given in the figure.
$\angle \mathrm{APB}=\angle \mathrm{OPC}=\left(22 \frac{1}{2}\right)^{0}$
$\angle \mathrm{OQC}=\frac{1}{2} \angle \mathrm{OPC}=\frac{1}{2} \times\left(22 \frac{1}{2}\right)^{0}=\left(11 \frac{1}{4}\right)^{0}$

II. Drawing a triangle in which circumradius and two of its angles are given

1. Draw a triangle of circumradius 3 cm and two of angles 50° and 60°
Answer
Two angles of triangle are 50° and $60^{\circ} \therefore$ Central angles of two arcs of circle are $2 \times 50^{\circ}=100^{\circ}$ and $2 \times 60^{\circ}=120^{\circ}$
First draw a circle of radius 3 cm . Draw a radius of the circle.
Measure 100° based on this radius using protractor on the centre of the circle. At that point draw the radius. Again measure 120° based on any radius drawn and draw the radius. we get 3 end points of radii. Join these points to get the triangle.

$$
\begin{aligned}
& \angle A=\frac{\mathbf{1}}{\mathbf{2}} \angle B O C=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{1 0 0 ^ { \circ }}=\mathbf{5 0}^{\circ} \\
& \angle B=\frac{\mathbf{1}}{\mathbf{2}} \angle A O C=\frac{1}{\mathbf{2}} \mathbf{1 2 0 ^ { \circ } = 6 0 ^ { \circ }} \\
& \angle C=\mathbf{1 8 0}^{\circ}-\left(\mathbf{5 0}^{\circ}+\mathbf{6 0}^{\circ} \mathbf{)}=\mathbf{1 8 0}^{\circ}-\mathbf{1 1 0}^{\circ}=\mathbf{7 0}^{\circ}\right.
\end{aligned}
$$

2. Draw a triangle of circumradius 4 cm and two of its angles are $\left(57 \frac{1}{2}\right)^{0}$ and $\left(62 \frac{1}{2}\right)^{0}$

Answer

Draw this figure as done in the previous question.
Here, Central angles of two arcs of circle are $2 \times\left(57 \frac{1}{2}\right)^{0}=115^{\circ}$
and $2 \times\left(62 \frac{1}{2}\right)^{0}=125^{\circ}$

$$
\begin{aligned}
& \angle A=\frac{1}{2} \angle B O C=\frac{1}{2} 125^{\circ}=62 \frac{1}{2}^{\circ} \\
& \angle C=\frac{1}{2} \angle A O B=\frac{1}{2} 115^{\circ}=57 \frac{1}{2}^{\circ} \\
& \angle B=180^{\circ}-\left(62 \frac{1}{2}^{\circ}+57 \frac{1}{2}^{\circ}\right)=180-120^{\circ}=60^{\circ}
\end{aligned}
$$

3. In each problem below, draw a circle and a chord to divide it into two parts such that the parts are as specified;
i) All angles on one part 80°
ii) All angles on one part 110
iii) All angles on one part half of all angles on the other.
iv) All angles on one part, one and a half times the angles on the other.
Answer
Draw a circle of any radius.
i) If all angles on one part 80°,

Central angle of the other part $=2 \times 80^{\circ}=160^{\circ}$

$$
\begin{aligned}
& \angle A O B=160^{\circ} \\
& \angle A P B=\angle A Q B=\frac{1}{2} \angle A O B=\frac{1}{2} 160^{\circ}=80^{\circ}
\end{aligned}
$$

ii) If all angles on one part 110°,
\therefore Angle of the other part $=180^{\circ}-\mathbf{1 1 0}^{\circ}=\mathbf{7 0}^{\circ}$
Then,
Central angle of one part $=2 \times 70^{\circ}=140^{\circ}$

$$
\angle A O B=140^{\circ}
$$

$$
\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} 140^{\circ}=70^{\circ}
$$

$$
\angle A Q B=180^{\circ}-\angle A P B=180^{\circ}-70^{\circ}=110^{\circ}
$$

iii) Let, All angles on one part $=x$, then

All angles on the other part $=2 \mathrm{x}$

$$
\text { Now } x+2 x=180
$$

$$
3 x=180^{\circ}
$$

$$
x=\frac{180^{\circ}}{3}=60^{\circ}
$$

That is, All angles on one part $=60^{\circ}$
All angles on the other part $=120^{\circ}$
\therefore Central angle of one part $=2 \times 60^{\circ}=120^{\circ}$

$$
\begin{aligned}
& \angle A O B=120^{\circ} \\
& \angle A P B=\frac{1}{2} \angle A O B=\frac{1}{2} 120^{\circ}=60^{\circ}
\end{aligned}
$$

$$
\angle A Q B=180^{\circ}-\angle A P B=180^{\circ}-60^{\circ}=120^{\circ}
$$

iv) Let all angles on one part $=x$ then

All angles on the other part $=1.5 x=\frac{3}{2} \mathbf{x}^{0}$

$$
\begin{aligned}
x+\frac{3}{2} x^{0} & =180^{\circ} \\
\frac{5}{2} x & =180^{\circ} \\
x & =\frac{180 \times 2}{5}=72^{0}
\end{aligned}
$$

That is,
All angles on one part $=7 \mathbf{7 2}^{\circ}$
All angles on the other part $=\frac{3}{2} x=\frac{3}{2} \times 72^{\circ}=108^{\circ}$
\therefore Central angle of one part $=144^{\circ}$

$$
\begin{aligned}
& \angle A O B=144^{\circ} \\
& \angle A P B=\frac{1}{2} \angle A O B=\frac{1}{2} 144^{\circ}=72^{\circ} \\
& \angle A Q B=180^{\circ}-\angle A P B=180^{\circ}-72^{\circ}=108^{\circ}
\end{aligned}
$$

ASSIGNMENT

Draw a triangle of circumradius 3 cm and two of its angles are $\left(32 \frac{1}{2}\right)^{0}$ and $\left(37 \frac{1}{2}\right)^{0}$

