TEST PAPER 2

Total Questions: 75

Time allotted 90 minutes

If $\cos ec\theta + \cot \theta = \frac{11}{2}$, then $\tan \theta =$ 1. (a) $\frac{21}{22}$ (b) $\frac{15}{16}$ (c) $\frac{44}{117}$ (d) $\frac{117}{44}$ The value of $\tan 1^0 \tan 2^0$ ____ $\tan 89^0$ is (a) 0 (b) 1 2. (c) -1 (d) None of these The value of $\cos^2 73^0 + \cos^2 47^0 + \cos 73^0 \cos 47^0$ is 3. (b) $-\frac{1}{4}$ (a) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) None of these If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then the value of A + B is 4. (a) $\pi/4$ (b) zero (d) π_{6} (c) π If $\csc\theta - \cot\theta = \frac{1}{2}, 0 < \theta < \frac{\pi}{2}$, then $\cos\theta$ is equal to 5. (a) $\frac{5}{3}$ (b) $\frac{3}{5}$ (c) $-\frac{3}{5}$ (d) $-\frac{5}{3}$ If $\tan A - \tan B = x$ and $\cot B - \cot A = y$, then $\cot (A - B) =$ 6. (b) $\frac{1}{x} + \frac{1}{y}$ (a) $\frac{1}{x} - \frac{1}{y}$ (c) $\frac{1}{v} - \frac{1}{x}$ (d) None of these If $\tan^2 \theta = 2 \tan^2 \phi + 1$, then $\cos 2\theta + \sin^2 \phi =$ 7. (a) 0 (b) 1 (c) 2 (d) None of these If $\cos(A-B) = \frac{3}{5}$ and $\tan A \tan B = 2$, then 8. (a) $\cos A \cos B = \frac{1}{5}$ (b) $\cos A \cos B = -\frac{1}{5}$ (c) $\sin A \sin B = \frac{-2}{5}$ (d) $\sin A \sin B = \frac{-1}{5}$

9. The most general value of θ which satisfies both the equations $\sin \theta = \frac{-1}{2}$ and $\tan \theta$ is

(a) $2n\pi + \frac{\pi}{6}$ (b) $2n\pi + \frac{7\pi}{6}$ (c) $2n\pi + \frac{11\pi}{6}$ (d) None of these

10. The value of θ satisfying $\cos \theta + \sqrt{3} \sin \theta = 2$ is (a) $5\pi/3$ (b) $4\pi/3$ (c) $2\pi/3$ (d) $\pi/3$

11. The principal value of
$$\sin^{-1}\left(\sin\frac{5\pi}{3}\right)$$
 is
(a) $\frac{4\pi}{3}$ (b) $\frac{-\pi}{3}$
(c) $\frac{-5\pi}{3}$ (d) $\frac{5\pi}{3}$

12. The principal value of
$$\sin^{-1}\left[\sin\left(\frac{2\pi}{3}\right)\right]$$
 is
(a) $-2\pi/3$ (b) $2\pi/3$
(c) $4\pi/3$ (d) None of these

13.
$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$$
 is equal to
(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$
(c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{4}$

14. If P₁, P₂, P₃ are the perpendicular from the angular points of a triangle on the opposite sides then $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} =$

P₁ P₂ P₃
(a)
$$\frac{1}{r}$$
 (b) $\frac{2}{r}$
(c) $\frac{3}{r}$ (d) None of these

- 15. If in a $\triangle ABC$, $2\cos A = \sin B \csc C$ then (a) 2a = bc (b) c = a(c) a = b (d) b = c
- 16. In a $\triangle ABC$, if $\cos B = \frac{\sin A}{2 \sin C}$, then the triangle is (a) equilateral (b) isosceles (c) right angled (d) none of these
- 17. A man of height 6 ft, observes the top of a tower and the foot of the tower at angles of 45° and 30° of elevation and depression respectively. The height of the tower is

(a) $\left(1+\sqrt{3}\right)m$	(b) $3(1+\sqrt{3})m$
(c) $6(1+\sqrt{3})m$	(d) None of these

18. From the top of a diff 300 metres high, the top of a tower was observed at an angle of depression 30^{0} and from the foot of the tower the top of the cliff was observed at an angle of elevation 45^{0} . The height of the tower is

(a) $50(3-\sqrt{3})m$	(b) $200(3-\sqrt{3})m$
(c) $100(3-\sqrt{3})m$	(d) None of these

19. The length of the median through A of a triangle whose vertices are A(-1,3), B(1-1) and C(5,1) is (a) 5. (b) 4.

	(a) 5	(0) 4
(c) I (d) None of these	(c) 1	(d) None of these

20. The equation of the straight line, passing through the point (1, -2) and parallel to the line 8x - 4y + 7 = 0 is (a) 2x + y - 4 = 0 (b) 2x - y + 4 = 0(c) 2x - y - 4 = 0 (d) None of these

21. The distance between the lines 5x - 12y + 2 = 0 and 5x - 12y - 3 = 0 is

(a) $\frac{3}{13}$	(b) $\frac{5}{13}$
(c) $\frac{7}{13}$	(d) None of these

22. On the portion of the straight line x + y = 2 which is intercepted between the axes, a square is constructed away from the origin, with this portion as one of its side, If P denotes the perpendicular distance of a side of this square from the origin then the maximum value of P is

(a) √	2	(b)	2√2
(c) 3-	$\sqrt{2}$	(d)	$4\sqrt{2}$

23. The pair of lines which join the origin to the points of intersection of the line y = mx + c with the curve $x^2 + y^2 = a^2$ are at right angles if

(a)
$$c^2 = a^2 (1 + m^2)$$
 (b) $2c^2 = a^2 (1 + m^2)$
(c) $2c^2 = a^2 (1 - m^2)$ (d) None of these

- 24. If the lines represented by the equation $3y^2 x^2 + 2\sqrt{3}x 3 = 0$ are rotated about the point $(\sqrt{3}, 0)$ through an angle 15°, one clockwise direction and other in anticlockwise direction then the equation of the pair of lines in the new position is (a) $y^2 - x^2 + 2\sqrt{3}x + 3 = 0$ (b) $y^2 - x^2 + 2\sqrt{3}x - 3 = 0$
 - (c) $y^2 x^2 2\sqrt{3}x + 3 = 0$
 - (d) None of these
- 25. The sides of a square are x = 2, x = 3, y = 1 and y = 2. The equation of the circle drawn on the diagonals of the square as its diameter is

(a) $x^{2} + y^{2} - 5x - 3y + 8 = 0$ (b) $x^{2} + y^{2} + 5x - 3y + 8 = 0$ (c) $x^{2} + y^{2} + 5x + 3y - 8 = 0$ (d) None of these

26. If the equation of a circle is $3x^2 + 3y^2 + kxy + 9x + (K-6)y + 3 = 0$ then its radius is

(a)
$$\frac{3}{2}$$
 (b) $\sqrt{17}/2$
(c) $\frac{2}{3}$ (d) None of these

- 27. If the circle $x^2 + y^2 + 6x + 8y + a = 0$ bisects the circumference of the circle $x^2 + y^2 + 2x 6y b = 0$, then a + b is equal to (a) 38 (b) -38 (c) 42 (d) None of these
- 28. For the parabola $x^2 + 4x + 4y + 16 = 0$, the equation of the axis and the directrix are given by (a) x + 2 = 0, y - 2 = 0 (b) x - 2 = 0, y + 2 = 0(c) x + 2 = 0, y + 2 = 0 (d) None of these
- 29. The value of k for which the line x + y + 1 = 0 touches the parabola $y^2 = kx$ is (a) -4 (b) 4 (c) 2 (d) -2
- 30. The portion of a tangent to a parabola $y^2 = 4ax$ cut off between the directrix and the curve subtends an angle θ at the focus where $\theta =$

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{3}$
(c) $\frac{\pi}{2}$ (d) None of these

31. The equation of the ellipse referred to its axes as the axes of coordinates with minor axis 4 and the distance between the foci 2, is

(a)
$$\frac{x^2}{5} + \frac{y^2}{4} = 1$$

(b) $\frac{x^2}{4} + \frac{y^2}{5} = 1$
(c) $\frac{x^2}{6} + \frac{y^2}{4} = 1$
(d) $\frac{x^2}{4} + \frac{y^2}{6} = 1$

32. The eccentricity of the curve represented by the equation $x^2 + 2y^2 - 2x + 3y + 2 = 0$ is

(a) 0 (b)
$$\frac{1}{2}$$

(c) $\frac{1}{\sqrt{2}}$ (d) $\sqrt{2}$

33. If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then its eccentric angle θ is equal to (a) 0 (b) 90⁰ (c) 45⁰ (d) 60⁰ 34. If the tangent at the point $(2 \sec \theta, 3 \tan \theta)$ of the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel to 3x - y + 4 = 0 then the value of θ is (a) 45^0 (b) 60^0 (c) 30^0 (d) 75^0

35. The asymptotes of the hyperbola xy - 3x + 4y + 2 = 0 are (a) x = -4, y = 3 (b) x = 4, y = 3(c) x = 2, y = -3 (d) x = 2, y = 3

36. The domain of the function
$$f(x) = \frac{1}{\sqrt{x^2 - 3x + 2}}$$
 is
(a) $(-\infty, 1)$ (b) $(-\infty, 1) \cup (2, \infty)$
(c) $(-\infty, 1] \cup [2, \infty)$ (d) $(2, \infty)$

37. The domain of the function $f(x) = \log_{\frac{1}{2}} \left(x - \frac{1}{2} \right) + \log_2 \sqrt{4x^2 - 4x + 5}$ is (a) $\left[\frac{1}{2}, \infty \right]$ (b) $\left(\frac{1}{2}, \infty \right)$ (c) $(-\infty, \infty)$ (d) None of these

38. The range of the function
$$f(x) = \tan \sqrt{\frac{\pi^2}{9} - x^2}$$
 is
(a) $\begin{bmatrix} 0, \sqrt{3} \end{bmatrix}$ (b) $\begin{pmatrix} 0, \sqrt{3} \end{pmatrix}$
(c) $\begin{bmatrix} 0, \sqrt{3} \end{bmatrix}$ (d) $\begin{pmatrix} 0, \sqrt{3} \end{bmatrix}$

39. If $f(x) = 64x^3 + \frac{1}{x^3}$ and a, b are the roots of $4x + \frac{1}{x} = 3$, then (a) f(a) = 12 (b) f(b) = 11(c) f(a) = f(b) (d) None of these

40.
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} \text{ equals}$$

(a) $-\pi$ (b) π
(c) $\frac{\pi}{2}$ (d) 1

41. The value of
$$\lim_{x\to\infty} \frac{x^5}{5^x}$$
 is
(a) 1 (b) -1
(c) 0 (d) None of these

42.
$$\lim_{x \to \infty} \left(\sin \sqrt{x+1} - \sin \sqrt{x} \right) \text{ is equal to}$$

(a) 1 (b) -1
(c) 0 (d) None of these

43. ^[1,1] w^x is equal to
^(a) 0 (b) 1
^(c) -1 (c) None of these
44. Let
$$f(x) = \begin{cases} \frac{1 + \cos x}{(\pi - x)^3}, \frac{\sin^2 x}{\log(1 + \pi^3 - 2\pi x + x^2)}, x \neq \pi \end{cases}$$
. If f(x) is continuous at x = π, then k is equal
to
^(a) 1/4 (b) 1/2
^(c) -1/2 (c) -1/2 (c) -1/4
45. The point (s) of the discontinuity of the function $f(x) \begin{cases} \frac{1}{5}(2x^2 + 3), x \leq 1 \\ 6 - 5x, 1 < x < 3is(are) \\ x - 3, x \geq 3 \end{cases}$
^(a) x = 1 (b) x = 3
^(c) x = 1, 3 (d) None of these
46. If f(x + y) = 2f(x), f(y) for x, y, where f¹(0) = 3 and f(4) = 2, then f¹(4) is equal to
^(a) 6 (b) 1/2
^(c) 4 (d) None of these
47. If y = a cos(log x) + b sin(log x), then x² d²y / dx² + x d⁴y / dx =
^(a) (c) -y (d) None of these
48. If x² + y² = t + 1/t and x⁴ + y⁴ = t² + 1/t² then d⁴y / dx is equal to
^(a) 3/x (c) y - y / y / d) None of these
49. If y = x^{(by x)/uplay x}, then d⁴y / y is qual to
^(a) 3/x (c) y - 1/x / y / dx is equal to
^(a) 9/x (c) -y (d) None of these
50. The angle between the tangents to the curve y² = 2ax at the points where x = 9/2 is

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

51. The curve $y^2 = 2x$ and 2xy = k cut at right angles if (a) $k^2 = 8$ (b) $k^2 = 4$ (c) $k^2 = 2$ (d) None of these

52. The maximum value of the function $y = x(x-1)^2$, $o \le x \le 2$ is (a) 0 (b) $\frac{4}{27}$ (c) -4 (d) None of these

53. The function -4Noneof (x) = sin⁴ x + cos⁴ x increase in the interval

(a)
$$\left(0, \frac{\pi}{8}\right)$$
 (b) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
(c) $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$ (d) $\left(\frac{5\pi}{8}, \frac{3\pi}{4}\right)$

54. The derivative of $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$ w.r.t. $\cos^{-1} \sqrt{\frac{1+\sqrt{1+x^2}}{2\sqrt{1+x^2}}}$ is (a) 1 (b) -1 (c) $\frac{1}{2}$ (d) None of these

55. If
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, then $\frac{dy}{dx}$ is equal.
(a) $\frac{2}{1+x^2}$, when $-1 < x < 1$
(b) $\frac{2}{1+x^2}$, when $x < -1$ or $x > 1$
(c) $\frac{-2}{1+x^2}$, when $-1 < x < 1$
(d) None of these

56.
$$\int \frac{\cot x}{\sqrt{\sin x}} dx \text{ is equal to}$$
(a) $2\sqrt{\sin x} + c$
(b) $\frac{1}{2\sqrt{\sin x}} + c$
(c) $\frac{-2}{\sqrt{\sin x}} + c$
(d) $\frac{2}{\sqrt{\sin x}} + c$

57.
$$\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx \text{ is equal to}$$
(a) $12 \left(\frac{\left(1+\sqrt[4]{x}\right)^{\frac{7}{3}}}{7} + \frac{\left(1+\sqrt[4]{x}\right)^{\frac{4}{3}}}{4} \right) + c$

(b)
$$12\left(\frac{\left(1+\sqrt[4]{x}\right)^{\frac{7}{3}}}{7}-\frac{\left(1+\sqrt[4]{x}\right)^{\frac{4}{3}}}{4}\right)+c$$

(c) $6\left(\frac{\left(1+\sqrt[4]{x}\right)^{\frac{7}{3}}}{7}-\frac{\left(1+\sqrt[4]{x}\right)^{\frac{4}{3}}}{4}\right)+c$

(d) None of these

58.
$$\int e^{x} \left(\frac{1-x}{1+x}\right)^{2} dx \text{ is equal to}$$
(a) $e^{x} \left(\frac{1-x}{1+x^{2}}\right) + c$ (b) $e^{x} \left(\frac{x-1}{1+x^{2}}\right) + c$
(c) $\frac{e^{x}}{1+x^{2}} + c$ (d) None of these

59. Integral of
$$\frac{1}{1+(\log x)^2}$$
 with respect to log x is
(a) $\frac{\tan^{-1}(\log x)}{x} + c$ (b) $\tan^{-1}(\log x) + c$
(c) $\frac{\tan^{-1} x}{x} + c$ (d) None of these

60.
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x \cdot \cos^2 x}{(\sin^3 x + \cos^3 x)^2} dx \text{ is equal to}$$
(a) $\frac{1}{6}$
(b) $\frac{1}{12}$
(c) $\frac{1}{4}$
(d) None of these

61. The value of the integral
$$\int_{0}^{2[x]} (x - [x]) dx$$
 is
(a) $[x]$ (b) $\frac{1}{2}[x]$
(c) $3[x]$ (d) $2[x]$

62. The value of the integral
$$\int_{-3}^{3} \frac{x-4}{|x-4|} dx$$
 is
(a) 0 (b) 6
(c) -6 (d) None of these

63. The value of
$$\int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| dx$$
 is
(a) 0 (b) $2(\sqrt{2}-1)$

(c)
$$2\sqrt{2}$$
 (d) $2(\sqrt{2}+1)$

64.	The solution of the equati	on $y \sin x \frac{dy}{dx} = \cos x \left(\sin x - \frac{y^2}{2} \right)$ given $y = 1$ when $x = \frac{\pi}{2}$ is
		(b) $y^2 = 2 \sin x$
	-	(d) $x^2 = 2 \sin x$ (d) $x^2 = 2 \sin y$
	(c) $x = \sin y$	$(u) x = 2 \sin y$
65.	The order and degree of the	the differential equation $\left(1+3.\frac{dy}{dx}\right)^{\frac{1}{3}} = \frac{7d^3y}{dx^3}$ are
	(a) $1, \frac{2}{3}$	(b) (3,4)
	(c) $(3,3)$	(d) $(1,2)$
66.	The solution of the different	ential equation $2x \frac{dy}{dx} - y = 3$ represent
	(a) circle(c) ellipse	(b) straight line (d) parabola
67.	The modulus of $\frac{(3+2i)^2}{(4-3i)}$	is
	(a) $\frac{13}{5}$	(b) $\frac{11}{5}$
	(c) $\frac{9}{5}$	(d) $\frac{7}{5}$
68.	The continued product of	the four values of $\left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right]^{\frac{3}{4}}$ is
	(a) -1	(b) 1
	(c) 2	(d) -2
69.		cube roots of units, then $(3+3\omega+5\omega^2)^6 - (2+6\omega+2\omega^2)^3$ is equal to
	(a) 1 (c) 0	(b) 2 (d) -1
70.	Let z be a complex number	er with modulus 2 and argument $\frac{2\pi}{3}$, then z is equal to
	(a) $-1 + i\sqrt{3}$	(b) $1 - i\sqrt{3}$
	(c) $\frac{-1}{3} + \frac{i\sqrt{3}}{2}$	`(d) None of these
71.	In an A.P. of 81 terms, the	e 41th term is 10. Then the sum of series is
	(a) 10 × 41	(b) $\frac{10 \times 41}{2}$
	(c) 10 × 81	(d) 41×81
72.	If the n th term of a series i	s $\frac{3+n}{4}$, then the sum of 105 terms is
	(a) 1470	(b) 1360
	(c) 1530	(d) None of these

- 73. If a, b, c, d, e, f are in A.P., then e c is equal to (a) 2(c-a) (b) 2(d-c)(c) 2(f-d) (d) d-c
- 74. If the sum of three numbers in A.P. is 12 and the sum of their cubes is 288, then the numbers are
 (a) 2, 4, 6
 (b) 1, 4, 7
 (c) 1, 3, 5
 (d) None of these
- 75. The values of k for which the quadratic equation $kx^2 + 1 = kx + 3x 11x^2$ has real and equal roots are

(a) $\{-11, -3\}$	(b) ·	{5,7}
-------------------	-------	-------

(c) $\{5,-7\}$ (d) None of these

	ANSWER KEYS								
-		16		21		1.5		(1	()
1.	(c)	16.	(b)	31.	(a)	46.	(b)	61.	(a)
2.	(b)	17.	(c)	32.	(c)	47.	(c)	62.	(c)
3.	(c)	18.	(c)	33.	(c)	48.	(b)	63.	(b)
4.	(a)	19.	(a)	34.	(c)	49.	(a)	64.	(a)
5.	(b)	20.	(c)	35.	(a)	50.	(d)	65.	(c)
6.	(b)	21.	(b)	36.	(b)	51.	(a)	66.	(d)
7.	(a)	22.	(c)	37.	(b)	52.	(b)	67.	(a)
8.	(a)	23.	(b)	38.	(a)	53.	(b)	68.	(b)
9.	(b)	24.	(b)	39.	(c)	54.	(a)	69.	(c)
10.	(d)	25.	(a)	40.	(b)	55.	(a)	70.	(a)
11.	(b)	26.	(a)	41.	(c)	56.	(c)	71.	(c)
12.	(d)	27.	(b)	42.	(c)	57.	(b)	72.	(a)
13.	(c)	28.	(c)	43.	(b)	58.	(c)	73.	(b)
14.	(a)	29.	(b)	44.	(b)	59.	(b)	74.	(a)
15.	(b)	30.	(c)	45.	(b)	60.	(a)	75.	(c)