KITE VICTERS ONLINE CLASS -24-08 -2021

SSLC -Chemistry -Class -14

Unit 2 : Gas Laws and Mole Concept

Molecular Mass and Gram Molecules Mass

Molecular mass is the sum of atomic masses of a molecule.

Eg: Molecular mass of water (H_2O). 1+1+16=18

Eg: Molecular mass of Ammonia (NH $_3$). 14+1+1=17

The mass in grams equal to the molecular mass of the substance is called Gram Molecular Mass (GMM) of that substance.

 The amount of a substance in grams equal to its molecular mass is called Gram Molecular Mass.

Number of Molecules

Let us analyse the following table.

KITE VICTERS ONLINE CLASS -24-08 -2021

Element/ Compound	Molecular Mass	Mass in grams	GMM	No. of molecules
Hydrogen H ₂	2	2g	1GMM	6.022 x 10 ²³ molecules
Oxygen O ₂	32	32g	1GMM	6.022 x 10 ²³ molecules
Nitrogen N ₂	28	28g	1GMM	6.022 x 10 ²³ molecules
Water H ₂ O	18	18g	1GMM	6.022 x 10 ²³ molecules
Ammonia NH ₃	17	17g	1GMM	6.022 x 10 ²³ molecules

If you take 32g of Oxygen (O₂) it contains 1 GMM of Oxygen. It contains 6.022x10²³molecules of Oxygen.

One mole molecules

6.022x10²³ molecules are called one mole molecule.

 $1 \text{ GMM} = 1 \text{ Mole} = 6.022 \times 10^{23} \text{ molecules}.$

Questions

1) Calculate the molecular mass of following molecules.

KITE VICTERS ONLINE CLASS -24-08 -2021

(Atomic mass C=12,Cl=35.5, H=1, O=16, S=32,Ca=40)

- a) HCl
- b) H_2SO_4
- c) CaCl₂
- d) $C_6H_{12}O_6$
- 2) Calculate the number of molecules and GMM present in each sample?

(Atomic mass H=1, O=16, S=32, Ca=40, N=14)

- a) 140g Nitrogen (N₂)
- b) 72g Water
- c) 170g Ammonia (NH₃)
- 3) Calculate the number of molecules present in each sample?
- 1. 360 g glucose (Molecular mass = 180)
- 2. 10 g Hydrogen (Molecular mass = 2)
