Answer key

First Year Higher Secondary Model
Examination - 2021
Mathematics (Science)

1. (i) $A=\{2,3,5,7\}$
(ii) (a) 16 since, $2^{4}=16$
2. (i) $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

$$
=100+150-50=200
$$

(ii) $n(A-B)=n(A)-n(A \cap B)$

$$
=100-50=50
$$

3. (i) $p(n): 7^{n}-3^{n}$ is divisible by 4

For $\mathrm{n}=1$

$$
p(1): 7^{1}-3^{1}=7-3=4
$$

Which is divisible by 4.
Therefore $p(1)$ is true.
(ii) Assume that $\mathrm{p}(\mathrm{k})$ is true.
$p(k): 7^{k}-3^{k}$ is divisible by 4
so $7^{k}-3^{k}=4 M$
and $7^{k}=4 M+3^{k}$
Now $p(k+1)=7^{(k+1)}-3^{(k+1)}$

$$
\begin{aligned}
& =7^{k} \cdot 7-3^{k} \cdot 3 \\
& =\left(4 M+3^{k}\right) \cdot 7-3^{k} \cdot 3 \\
& =28 \mathrm{M}+7 \cdot 3^{k}-3 \cdot 3^{k} \\
& =28 \mathrm{M}+(7-3) \quad 3^{k} \\
& =28 \mathrm{M}+4 \cdot 3^{k} \\
& =4\left(7 \mathrm{M}+3^{k}\right)
\end{aligned}
$$

Which is divisible by 4.
Therefore $\mathrm{p}(\mathrm{k}+1)$ is true .
4.

$$
\begin{aligned}
(a+b)^{n}= & { }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{(n-1)} b+{ }^{n} C_{2} a^{(n-2)} b^{2}+\ldots+{ }^{n} C_{n} b^{n} \\
\left(x^{2}+\frac{3}{x}\right)^{5}= & { }^{5} C_{0}\left(x^{2}\right)^{5}+{ }^{5} C_{1}\left(x^{2}\right)^{4}\left(\frac{3}{x}\right)+{ }^{5} C_{2}\left(x^{2}\right)^{3}\left(\frac{3}{x}\right)^{2} \\
& +{ }^{5} C_{3}\left(x^{2}\right)^{2}\left(\frac{3}{x}\right)^{3}+{ }^{5} C_{4} x^{2}\left(\frac{3}{x}\right)^{4}+{ }^{5} C_{5}\left(\frac{3}{x}\right)^{5} \\
= & 1 \cdot x^{10}+5 \cdot x^{8} \cdot \frac{3}{x}+10 \cdot x^{6} \cdot \frac{9}{x^{2}}+10 \cdot x^{4} \cdot \frac{27}{x^{3}} \\
& +5 \cdot x^{2} \cdot \frac{81}{x^{4}}+1 \cdot \frac{243}{x^{5}} \\
= & x^{10}+15 x^{7}+90 x^{4}+270 x+\frac{405}{x^{2}}+\frac{243}{x^{5}}
\end{aligned}
$$

5. $\mathrm{n}=10$, even number.

General term , $\quad T_{r+1}={ }^{n} C_{r} a^{(n-r)} b^{r}$

$$
T_{r+1}={ }^{10} C_{r}\left(\frac{x}{3}\right)^{(10-r)}(9 y)^{r}
$$

$$
\text { Middle term }=\left(\frac{n}{2}+1\right)^{\text {th }} \text { term }
$$

$$
\begin{aligned}
& =\left(\frac{10}{2}+1\right)^{\text {th }} \text { term } \\
& =6^{\text {th }} \text { term }
\end{aligned}
$$

$$
T_{6}=T_{5+1}={ }^{10} C_{5}\left(\frac{x}{3}\right)^{(10-5)}(9 y)^{5}
$$

$$
={ }^{10} C_{5}\left(\frac{x}{3}\right)^{5} \cdot 9^{5} \cdot y^{5}
$$

$$
=252 \cdot \frac{x^{5}}{243} \cdot 59049 \cdot y^{5}
$$

$$
=61236
$$

6. (i) $a_{8}=16 \Rightarrow a+7 d=16$

$$
a_{16}=48 \Rightarrow a+15 d=48
$$

subtracting them,
$8 \mathrm{~d}=32, \mathrm{~d}=4$, common difference $=4$
(ii) Also a $=16-7 \mathrm{~d}=16-28=-12$

$$
\begin{aligned}
a_{25} & =a+24 d \\
& =-12+24.4 \\
& =-12+96=84
\end{aligned}
$$

7. (i) slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-6}{4--2}=\frac{2}{6}$

$$
=\frac{1}{3}
$$

option (b) $\frac{1}{3}$
(ii) If lines are perpendicular then

$$
\begin{aligned}
& m_{1} m_{2}=-1 \\
& \text { so , } m_{2}=-3 \\
& m_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{24-12}{x-8}=\frac{12}{x-8}
\end{aligned}
$$

so $\frac{12}{x-8}=-3$
$-3(x-8)=12$
$-3 x+24=12$
$3 x=12$
$x=4$
8. (i) (c) $\mathrm{z}=0$
(ii) distance

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
& =\sqrt{(1--2)^{2}+(2-3)^{2}+(3-5)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}} \\
& =\sqrt{9+1+4}=\sqrt{14}
\end{aligned}
$$

9. By section formula,

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)
$$

here $\mathrm{m}: \mathrm{n}$ is the ratio
$\left(\frac{6 m+4 n}{m+n}, \frac{10 m+8 n}{m+n}, \frac{-8 m+10 n}{m+n}\right)$
the point lies in the YZ plane, so x - coordinate
is zero.

$$
\begin{aligned}
& \frac{6 m+4 n}{m+n}=0 \\
& 6 m+4 n=0 \\
& 6 m=-4 n \\
& \frac{m}{n}=\frac{-4}{6} \\
& \frac{m}{n}=\frac{-2}{3}
\end{aligned}
$$

Therefore ratio is $2: 3$
10. (i) $y^{2}=4 a x$

$$
\begin{aligned}
4 \mathrm{a} & =16 \\
\mathrm{a} & =4
\end{aligned}
$$

Length of the latus rectum $=4 \mathrm{a}=16$ option (b) 16
(ii) coordinates of focus; $(\mathrm{a}, 0)=(4,0)$

Equation of directrix is $\mathrm{x}=-4$
11. $\lim _{x \rightarrow 2}\left(\frac{x^{5}-32}{x^{3}-8}\right)=\lim _{x \rightarrow 2}\left(\frac{x^{5}-2^{5}}{x^{3}-2^{3}}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2}\left(\frac{\left(\frac{x^{5}-2^{5}}{x-2}\right)}{\left(\frac{x^{3}-2^{3}}{x-2}\right)}\right) \\
& =\frac{\lim _{x \rightarrow 2}\left(\frac{x^{5}-2^{5}}{x-2}\right)}{\lim _{x \rightarrow 2}\left(\frac{x^{3}-2^{3}}{x-2}\right)} \\
& =\frac{5.2^{4}}{3.2^{2}}=\frac{20}{3}
\end{aligned}
$$

12. (i) It is false that if a number is divisible by 10 , then it is divisible by 5 .
(ii) If a number is divisible by 5 , then it is divisible by 10 .
(iii) If a number is not divisible by 5 , then it is not divisible by 10 .
13. (i) $A^{l}=\{5,6\}$

$$
B^{l}=\{1,2,6\}
$$

(ii) $\mathrm{A}-\mathrm{B}=\{1,2\}$

$$
\begin{aligned}
& A \cap B^{l}=\{1,2\} \\
& A-B=A \cap B^{l}
\end{aligned}
$$

14. (i) $\mathrm{R}=\{(-1,4),(0,3),(1,2),(2,1)\}$
(ii) Domain $=\{-1,0,1,2\}$

Range $=\{4,3,2,1\}$
15. (i) (a) $\frac{-1}{2}$
(ii) $\sin x=\frac{3}{5}$

$$
\cos x=\frac{-4}{5}
$$

$\tan x=\frac{-3}{4}$
16. $p(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}$

For $\mathrm{n}=1$
LHS $=1$

$$
\text { RHS }=\frac{1(1+1)}{2}=1
$$

$p(1)$ is true.
Assume that $\mathrm{p}(\mathrm{k})$ is true.

$$
p(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2}
$$

Now , $\mathrm{p}(\mathrm{k}+1)=1+2+3+\ldots+\mathrm{k}+(\mathrm{k}+1)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Therefore $\mathrm{p}(\mathrm{k}+1)$ is true. $\mathrm{p}(\mathrm{n})$ is true by the principle of mathematical induction.
17. (i) (a) 1
(ii) $z=\frac{2+3 i}{1+2 i}$

$$
\begin{aligned}
& =\frac{(2+3 i)(1-2 i)}{(1+2 i)(1-2 i)} \\
& =\frac{2-4 i+3 i-6 i^{2}}{1^{2}-(2 i)^{2}} \\
& =\frac{2-i+6}{1--4}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8-i}{5} \\
& =\frac{8}{5}-i \frac{1}{5}
\end{aligned}
$$

18. (i) (b) $\sqrt{2}$
(ii) $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
$\mathrm{z}=1+\mathrm{i}, \quad \mathrm{x}=1$ and $\mathrm{y}=1$
$|z|=\sqrt{1+1}=\sqrt{2}$
$\tan \theta=\frac{y}{x}=\frac{1}{1}$
$\theta=\frac{\pi}{4}$

$$
z=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

19. (i) number of ways $=5^{5}=625$
(ii) number of ways $=5!=120$
20. (i) ${ }^{n} C_{r}={ }^{n} C_{n-r}$
therefore ${ }^{20} C_{12}={ }^{20} C_{8}$
option (b) 8
(ii) 3 red balls selected from 7 red balls in ${ }^{7} C_{3}$ ways and 2 white balls selected from 5 white balls in ${ }^{5} C_{2}$ ways.

$$
\begin{aligned}
\text { Number of ways } & ={ }^{7} C_{3} \times{ }^{5} C_{2} \\
& =35 \times 10=350
\end{aligned}
$$

21. Assume that $\sqrt{2}$ is rational.
$\sqrt{2}=\frac{a}{b}$ where a and b are integers
having no common factors.
Squaring, we get $2=\frac{a^{2}}{b^{2}}$

$$
a^{2}=2 b^{2}
$$

ie, 2 divides a
therefore there exist an integer c such that $\mathrm{a}=2 \mathrm{c}$ squaring, we get $a^{2}=4 c^{2}$

But $2 b^{2}=4 c^{2}$
$b^{2}=2 c^{2}$
ie, 2 divides b
which means 2 divides both a and b, which is a contradiction to our assumption a and b have no common factors.

Therefore $\sqrt{2}$ is rational.
22. (i) intercept form of the equation is
$\frac{x}{a}+\frac{y}{b}=1$
But the intercepts are same,

$$
\text { so } \frac{x}{a}+\frac{y}{a}=1
$$

ie $x+y=a$
But the line passes through $(2,3)$

$$
\begin{aligned}
& 2+3=\mathrm{a} \\
& \text { ie, } \mathrm{a}=5
\end{aligned}
$$

equation of the line is $x+y=5$
(ii) $y=-x+5$

$$
\text { slope }=-1
$$

23.(i) here $\mathrm{a}=5$ and $\mathrm{c}=4$

$$
\text { but } \begin{aligned}
a^{2} & =b^{2}+c^{2} \\
25 & =b^{2}+16 \\
b^{2} & =9 \\
\mathrm{~b} & =3
\end{aligned}
$$

Equation of the ellipse is, $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
(ii) Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{18}{5}$
24. $y=\frac{x^{2}+1}{x+1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(x+1) \frac{d}{d x}\left(x^{2}+1\right)-\left(x^{2}+1\right) \frac{d}{d x}(x+1)}{(x+1)^{2}} \\
& =\frac{(x+1)(2 x)-\left(x^{2}+1\right) \cdot 1}{(x+1)^{2}} \\
& =\frac{2 x^{2}+2 x-x^{2}-1}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x-1}{(x+1)^{2}}
\end{aligned}
$$

25. (i) $f(0)=|0-2|=|-2|=2$
option (b) 2
(ii)
(ii)

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline f(x) & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 \\
\hline
\end{array}
$$

(iii) Range $=$ set of all positive real numbers including zero, or
or $[0, \infty)$, or $\mathbf{R}+$
26. (i) $\sin 75=\sin (45+30)$

$$
=\sin 45 \cos 30+\cos 45 \sin 30
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x} & =\frac{2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)}{2 \cos \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)} \\
& =\frac{\sin \left(\frac{5 x+3 x}{2}\right)}{\cos \left(\frac{5 x+3 x}{2}\right)} \\
& =\frac{\sin 4 x}{\cos 4 x} \\
& =\tan 4 x
\end{aligned}
$$

27.

28. (i) common ratio

$$
\begin{aligned}
& \frac{x}{\left(\frac{1}{4}\right)}=\frac{4}{x} \\
& x^{2}=1 \\
& x= \pm 1
\end{aligned}
$$

(ii) $5+55+555+\ldots$ up to n terms

$$
\begin{aligned}
& =5(1+11+111+\ldots+\text { up to n terms }) \\
& =\frac{5}{9}(9+99+999+\ldots+n \text { terms }) \\
& =\frac{5}{9}\left((10-1)+\left(10^{2}-1\right)+\ldots+n \text { terms }\right) \\
& =\frac{5}{9}\left(10+10^{2} \ldots+n \text { terms }-n\right) \\
& =\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right] \\
& =\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]
\end{aligned}
$$

29.

n_{i}	f_{i}	$n_{i} f_{i}$	n_{i}^{2}	$n_{i}^{2} f_{i}$
3	7	21	9	63
8	10	80	64	640
13	15	195	169	2535
18	10	180	324	3240
23	6	138	529	3174
$N=48$	614		9652	

Mean , $\bar{x}=\frac{\sum f_{i} x_{i}}{N}=\frac{614}{48}=12.79$
Variance, $\quad \sigma^{2}=\frac{\sum f_{i} x_{i}^{2}}{N}-(\bar{x})^{2}$

$$
=\frac{9652}{48}-(12.79)^{2}=37.499 \approx 37.5
$$

S. D , $\sigma=\sqrt{\text { Varience }}$

$$
=\sqrt{37.5}=6.12
$$

30. (i) $n(N C C)=30$

$$
\mathrm{n}(\mathrm{NSS})=32
$$

$$
n(N C C \cap N S S)=24
$$

$P(N C C)=\frac{30}{60}=\frac{1}{2}$
(ii) $n(N C C \cup N S S)$

$$
\begin{aligned}
& =n(N C C)+n(N S S)-n(N C C \cap N S S) \\
& =30+32-24=38
\end{aligned}
$$

$P(N C C \cup N S S)=\frac{38}{60}=\frac{19}{30}$
(iii) P(neither NCC nor NSS)

$$
\begin{aligned}
& =1-P(N C C \cup N S S) \\
& =1-\frac{19}{30} \\
& =\frac{11}{30}
\end{aligned}
$$

