Reg. No. : \qquad
Name : \qquad

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION - 2021

Part - III
 MATHEMATICS (COMMERCE)
 Time : 2 Hours
 Maximum : 60 Scores Cool-off time : 20 Minutes

General Instructions to Candidates:

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

1. (i) The point $(4,-2,5)$ lies in \qquad octant.
(A) 1^{st}
(B) $4^{\text {th }}$
(C) $2^{\text {nd }}$
(D) $6^{\text {th }}$
(ii) Find the distance between the points $(2,3,5)$ and $(4,3,1)$.
2. Show that $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$.
3. In a G.P. the $3^{\text {rd }}$ term is 24 and $6^{\text {th }}$ term is 192 . Find
(i) The common ratio
(ii) The $10^{\text {th }}$ term
4. (i) The latus rectum of the parabola $x^{2}=6 y$ is
(A) 12
(B) 3
(C) 6
(D) $\frac{3}{2}$
(ii) Find the equation of the parabola with focus $(6,0)$ and directrix $x=-6$.
5. Evaluate : $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
6. (i) Write the negation of the statement " 5 is a prime number".
(ii) Write the contrapositive and converse of the statement.
"If a triangle is equilateral then it is isosceles".
7. Find the mean deviation about mean for the data.

$$
\begin{equation*}
4,7,8,9,10,12,13,17 \tag{3}
\end{equation*}
$$

8. Solve the inequality $4 x+3<5 x+7$.

$(6 \times 3=18)$
9. (i) $(4,-2,5)$ Øூை றிกூ \qquad

(A) 1-0๐ வ๐ைை
(B) 4-0๐ வ๐ைை
(C) 2-৩๐ வดைை
(D) 6-৩๐ வ๐ைை

10. $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$ กை

(A) 12
(B) 3
(C) 6
(D) $\frac{3}{2}$

11. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$ ฝ๐ஸும.

$$
\begin{equation*}
4,7,8,9,10,12,13,17 \tag{3}
\end{equation*}
$$

9. (i) ${ }^{n} C_{n}=$ \qquad .
(A) 0
(B) n
(C) 1
(D) n !
(ii) If ${ }^{n} C_{9}={ }^{n} C_{8}$. Find ${ }^{n} C_{17}$.
10. Expand $(x+2 y)^{4}$ using binomial theorem.
11. Consider the expansion $\left(\frac{x}{3}+9 y\right)^{10}$
(i) Write its general term.
(ii) Find the $3^{\text {rd }}$ term of the expansion.
12. A die is rolled. Let us consider the events.

A : 'getting a prime number'
B : 'getting an odd number'
Write the sets representing the events.
(i) A or B
(ii) A but not B

Questions 13 to 24 carries 4 scores each. Answer any six.
13. (i) Set builder form of the interval $(6,12]$ is
(A) $\{x: x \in \mathrm{R}, 6<x<12\}$
(B) $\{x: x \in \mathrm{R}, 6<x \leq 12\}$
(C) $\{x: x \in \mathrm{R}, 6 \leq x \leq 12\}$
(D) $\{x: x \in \mathrm{R}, 6 \leq x<12\}$
(ii) Write down all the subsets of $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
14. Let $\mathrm{A}=\{5,6,7\}, \mathrm{B}=\{3,4,5,6\}$ and R be a relation from A to B defined by $\mathrm{R}=\{(x, \mathrm{y}): \mathrm{y}=x-2, x \in \mathrm{~A}, \mathrm{y} \in \mathrm{B}\}$
(i) Write R in roster form.
(ii) Write the domain and range of R .
9. (i) ${ }^{n} C_{n}=$ \qquad .
(A) 0
(B) n
(C) 1
(D) n !

(i) வெரூூూ

(i) A or B
(ii) A but not B

(A) $\{x: x \in \mathrm{R}, 6<x<12\}$
(B) $\{x: x \in \mathrm{R}, 6<x \leq 12\}$
(C) $\{x: x \in \mathrm{R}, 6 \leq x \leq 12\}$
(D) $\{x: x \in \mathrm{R}, 6 \leq x<12\}$

15. (i) The value of $\sin 30^{\circ}=$ \qquad
(A) $\frac{1}{\sqrt{2}}$
(B) 2
(C) $\frac{1}{2}$
(D) $\sqrt{2}$
(ii) Find the value of $\sin 75^{\circ}$.
16. Consider the statement
$\mathrm{P}(\mathrm{n}): 1+3+3^{2}+\ldots \ldots+3^{\mathrm{n}-1}=\frac{3^{\mathrm{n}}-1}{2}$.
(i) Show that $\mathrm{P}(1)$ is true.
(ii) If $\mathrm{P}(\mathrm{k})$ is true, prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
17. (i) $\mathrm{i}^{2}=$ \qquad .
(A) 0
(B) 1
(C) 2
(D) -1
(ii) Express $(2+3 i)(1-i)$ in the form of $a+i b$.
18. Insert 6 numbers between 3 and 24 such that the resulting sequence is an A.P.
19. Consider the line $3 x-4 y+10=0$
(i) Write the line in intercept form.
(ii) Find the x-intercept and y-intercept.
20. (i) The x co-ordinate of a point in the YZ plane is \qquad .
(ii) Find the ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by the YZ plane.
 \qquad .
(A) $\frac{1}{\sqrt{2}}$
(B) 2
(C) $\frac{1}{2}$
(D) $\sqrt{2}$

16. $\mathrm{P}(\mathrm{n}): 1+3+3^{2}+\ldots \ldots+3^{\mathrm{n}-1}=\frac{3^{\mathrm{n}}-1}{2}$.

17. (i) $\mathrm{i}^{2}=$ \qquad .
(A) 0
(B) 1
(C) 2
(D) -1

 \qquad (ロறஸ゙.

21. Match the following :

A			B
(a)	$\frac{\mathrm{d}}{\mathrm{d} x}(5)$	(i)	$\frac{-1}{x^{2}}$
(b)	$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3}\right)$	(ii)	$2 x$
(c)	$\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{x}\right)$	(iii)	0
(d)	$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}\right)$	(iv)	$3 x^{2}$

(1)
(1)
(1)
(1)
22. Prove that $\sqrt{3}$ is irrational by the method of contradiction.
23. If A and B are events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$, Find
(i) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})$
(ii) $\mathrm{P}\left(\mathrm{A}^{\prime}\right)$
(iii) $\quad \mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$
24. Consider the straight line $x-2 y+3=0$
(i) Find the slope of the line
(ii) Find the equation of a line perpendicular to the above line and passing through $(1,-2)$.

Questions 25 to 30 carries 6 scores each. Answer any three.
25. Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}, B=\{3,4,5\}$
(i) Find $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$
(ii) Find $\mathrm{A} \cup \mathrm{B}, \mathrm{A} \cap \mathrm{B}$
(iii) Show that $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

A			B
(a)	$\frac{\mathrm{d}}{\mathrm{d} x}(5)$	(i)	$\frac{-1}{x^{2}}$
(b)	$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3}\right)$	(ii)	$2 x$
(c)	$\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{x}\right)$	(iii)	0
(d)	$\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}\right)$	(iv)	$3 x^{2}$

 லஜைியிமலூகு.

(iii) $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)$ ఉஸூூనிకிळூృக

25. $\mathrm{U}=\{1,2,3,4,5,6\}, \mathrm{A}=\{2,3\}, \mathrm{B}=\{3,4,5\}$ ®ே๓ைா

26. Consider the function $\mathrm{f}(x)=|x|, x \in \mathrm{R}$
(i) Find $f(2)$ and $f(-2)$
(ii) Draw the graph of $\mathrm{f}(x)$.
(iii) Find the domain and range of $\mathrm{f}(x)$.
27. Solve the system of inequality graphically :

$$
\begin{align*}
& x+2 y \leq 8 \\
& 2 x+y \leq 8 \\
& x \geq 0, y \geq 0 \tag{6}
\end{align*}
$$

28. (i) Find the value of n if ${ }^{n} P_{5}=42{ }^{n} P_{3}$
(ii) In how many of the distinct permutations of the letters in MISSISSIPPI do the four I's not come together.
29. Find the co-ordinate of the foci, vertices, the length of major axis, length of minor axis, eccentricity and length of Latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$.
30. Consider the data :

$\boldsymbol{x}_{\mathbf{i}}$	4	8	11	17	20	24	32
$\mathbf{f}_{\mathbf{i}}$	3	5	9	5	4	3	1

(i) Find the variance of the data.
(ii) Find the standard deviation.

(i) $\mathrm{f}(2), \mathrm{f}(-2)$ กிற

$$
\begin{align*}
& x+2 y \leq 8 \\
& 2 x+y \leq 8 \\
& x \geq 0, y \geq 0 \tag{6}
\end{align*}
$$

30.

$\boldsymbol{x}_{\mathbf{i}}$	4	8	11	17	20	24	32
$\mathbf{f}_{\mathbf{i}}$	3	5	9	5	4	3	1

