Name :

FY-324

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION – 2021

Part – III

PHYSICS

Time : 2 Hours Cool-off time : 20 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 20 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Answer any 3 questions from 1 to 5. Each carries 1 score. $(3 \times 1 = 3)$

- 1. Name the branch of physics which deals with light energy.
 - (a) Optics
 - (b) Electrodynamics
 - (c) Mechanics
 - (d) Thermodynamics
- 2. Out of the fundamental forces in nature, which is the weakest force ?
- 3. The maximum value of static friction is called _____.
- 4. The moment of linear momentum is called _____.
- 5. According to Kinetic theory of gas, what is the pressure of an ideal gas molecule ?

Answer any 5 questions from 6 to 16. Each carries 2 scores. $(5 \times 2 = 10)$

- 6. Write the SI units of the following fundamental quantities :
 - (a) electric current
 - (b) plane angle
- 7. A body is traveling along a circular path of radius 10 m as shown below. If it travels from A to B, find the distance and displacement of the body.

1 മുതൽ 5 വരെയുള്ള ചോദൃങ്ങൾക്ക് 1 സ്കോർ വീതം. ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരം എഴുതുക. (3 × 1 = 3)

- 1. പ്രകാശോർജ്ജത്തെക്കുറിച്ച് പ്രതിപാദിക്കുന്ന ഭൗതിക ശാസ്ത്ര ശാഖയുടെ പേരെഴുതുക.
 - (a) ഓപ്റ്റിക്സ്
 - (b) വൈദ്യുതഗതികം
 - (c) മെക്കാനിക്ക്
 - (d) താപഗതികം
- 2. പ്രകൃതിയിലെ അടിസ്ഥാന ബലങ്ങളിൽ ഏറ്റവും ദുർബലമായ ബലം ഏത് ?
- 3. സ്ഥിതഘർഷണത്തിന്റെ പരമാവധിവിലയെ _____ എന്നുവിളിക്കുന്നു.
- 4. രേഖീയ ആക്കത്തിന്റെ മൊമന്റിനെ _____ എന്നു വിളിക്കുന്നു.
- വാതകങ്ങളുടെ ഗതികസിദ്ധാന്തം അനുസരിച്ച് ഒരു ആദർശ വാതക തൻമാത്രയുടെ മർദ്ദം എത്രയാണ് ?

6 മുതൽ 16 വരെയുള്ള ചോദൃങ്ങൾക്ക് 2 സ്കോർ വീതം. ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരം എഴുതുക. (5 × 2 = 10)

- 6. താഴെപ്പറയുന്ന അടിസ്ഥാന അളവുകളുടെ SI യൂണിറ്റുകൾ എഴുതുക.
 - (a) വൈദ്യൂത പ്രവാഹ തീവ്രത
 - (b) പ്രതലകോൺ
- ഒരു വസ്തു 10 m ആരമുള്ള ഒരു വൃത്ത പാതയിലൂടെ സഞ്ചരിക്കുന്ന വിധം ചുവടെ കാണിച്ചിരിക്കുന്നു. ഇത് A യിൽ നിന്നും B യിലേക്ക് സഞ്ചരിക്കുമ്പോൾ അതിന്റെ ദുരവും സ്ഥാനാന്തരവും കാണുക.

- 8. Write whether the work done in the following cases are positive, negative or zero.
 - (a) Work done by frictional force.
 - (b) Work done by centripetal force on a body moving in a circular path.
 - (c) Work done by gravitational force in a freely falling body.
 - (d) Work done by a person carrying a load on his head and walks along a horizontal level road.
- 9. The magnitude of Kinetic energy of a body is 'K'. What is its kinetic energy if its velocity is doubled ?
- 10. State Newton's law of gravitation.

(a)	Name the type of strain produced in the above figure.	(1)
()		(-)

- (b) Write the equation for this strain. (1)
- 12. What is modulus of elasticity? What is its unit?
- 13. Calculate the efficiency of a heat engine working between 273 K and 373 K.
- 14. Define isochoric process. What is the work done during this process ?
- 15. State the law of conservation of angular momentum.

- താഴെ തന്നിരിക്കുന്നവയിൽ ചെയ്യപ്പെടുന്ന പ്രവൃത്തി പോസിറ്റീവ്, നെഗറ്റീവ്, പൂജ്യം ഇവയിലേതാണെന്ന് എഴുതുക.
 - (a) ഘർഷണബലം ചെയ്യുന്ന പ്രവൃത്തി.
 - (b) പൃത്ത പാതയിൽ ചലിക്കുന്ന വസ്തുവിൽ അഭികേന്ദ്ര ബലം ചെയ്യുന്ന പ്രവൃത്തി.
 - (c) നിർബാധം താഴേയ്ക്കു പതിക്കുന്ന വസ്തുവിൽ ഗുരുത്വാകർഷണ ബലം ചെയ്യുന്ന പ്രവൃത്തി.
 - (d) തലയിൽ ചുമടുമായി തിരശ്ചീനവും നിരപ്പായതുമായ റോഡിലൂടെ നടക്കുന്ന ആൾ ചെയ്യുന്ന പ്രവൃത്തി.
- 9. ഒരു വസ്തുവിന്റെ ഗതികോർജ്ജം K ആകുന്നു. ഇതിന്റെ പ്രവേഗം ഇരട്ടിയായാൽ ഗതികോർജ്ജം എത്രയാകും ?
- 10. ന്യൂട്ടന്റെ ഗുരുത്വാകർഷണനിയമം പ്രസ്താവിക്കുക.

- മുകളിൽ തന്നിരിക്കുന്ന ചിത്രത്തിൽ കാണിച്ചിരിക്കുന്ന സ്ട്രെയിനിന്റെ പേരെഴുതുക. (1)
- (b) ഈ സ്ട്രെയിനിന്റെ സമവാക്യം എഴുതുക.
- 12. ഇലാസ്തികതാ മോഡുലസ് എന്താണ് ? ഇതിന്റെ യൂണിറ്റ് എന്ത് ?
- 13. 273 K നും 373 K നും ഇടയിൽ പ്രവർത്തിക്കുന്ന ഒരു താപയന്ത്രത്തിന്റെ ക്ഷമത കണക്കാക്കുക.
- 14. സമവ്യാപ്ത പ്രക്രിയ എന്തെന്ന് നിർവചിക്കുക. ഈ പ്രക്രിയയിൽ ചെയ്യപ്പെടുന്ന പ്രവൃത്തി എന്താണ് ?
- 15. കോണീയ ആക്ക സംരക്ഷണ നിയമം പ്രസ്താവിക്കുക.

FY-324

(1)

16. Find the torque of a force $7\hat{i} + 3\hat{j} - 5\hat{k}$ about the origin. The force acts on a particle whose position vector is $\hat{i} - \hat{j} + \hat{k}$.

Answer any 4 questions from 17 to 24. Each carries 3 scores. $(4 \times 3 = 12)$

17. The distance travelled by a freely falling body is given by the equation, $y = v_0 t - \frac{1}{2} gt^2$. Using principles of dimensions, check the correctness of the equation.

- 18. (a) Define average velocity and average speed. (2)
 - (b) Draw the position-time graph of body having zero acceleration. (1)
- 19. Say whether the following statements are true/false :
 - (a) Kinetic friction depends on velocity of the body.
 - (b) Static friction is independent of area of contract.
 - (c) Kinetic friction is directly proportional to normal reaction.
- 20. State Newton's second law of motion. Using it derive an equation for force.
- 21. (a) What is the rotational analogue of force in linear motion? (1)
 - (b) It is difficult to close or open a door by applying force at the hinges. Why? (2)
- 22. The moment of inertia of a disc of mass 'M' and radius R about an axis passing through its centre and perpendicular to its plane is $\frac{MR^2}{2}$.
 - (a) What is the radius of gyration in this case ? (1)
 - (b) Using theorem of Perpendicular axes, derive an equation for moment of inertia of the disc about a diameter. (2)
- FY-324

16. മൂല ബിന്ദുവിനെ അവലംബിച്ചുള്ള $7\hat{i} + 3\hat{j} - 5\hat{k}$ എന്ന ബലത്തിന്റെ ടോർക്ക് കണ്ടെത്തുക. ബലം പ്രയോഗിക്കപ്പെടുന്നത് സ്ഥാനസദിശം $\hat{i} - \hat{j} + \hat{k}$ ഉള്ള ഒരു കണത്തിന്മേലാണ്.

17 മുതൽ 24 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 3 സ്കോർ വീതം. ഏതെങ്കിലും 4 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (4 × 3 = 12)

- 17. നിർബാധം താഴേയ്ക്കു പതിക്കുന്ന ഒരു വസ്തു സഞ്ചരിച്ച ദൂരം y = v₀t 1/2 gt² എന്ന സമവാകൃം ഉപയോഗിച്ച് സൂചിപ്പിച്ചിരിക്കുന്നു. ഡൈമെൻഷൻ തത്വപ്രകാരം ഈ സമവാകൃം ശരിയാണോ എന്ന് പരിശോധിക്കുക.
- 18. (a) ശരാശരിവേഗത, ശരാശരി പ്രവേഗം എന്നിവ നിർവ്വചിക്കുക. (2)
 - (b) ത്വരണം പൂജ്യമായ ഒരു വസ്തുവിന്റെ സ്ഥാന-സമയ ഗ്രാഫ് വരയ്ക്കുക. (1)
- 19. താഴെ തന്നിരിക്കുന്ന പ്രസ്താവനകൾ ശരിയോ തെറ്റോ എന്നെഴുതുക.
 - (a) ഗതിക ഘർഷണം വസ്തുവിന്റെ പ്രവേഗത്തെ ആശ്രയിക്കുന്നു. (1)
 - (b) സ്ഥിതഘർഷണം സമ്പർക്കത്തിലുള്ള പരപ്പളവിനെ ആശ്രയിക്കുന്നില്ല. (1)
 - (c) ഗതികഘർഷണം ലംബ ബലത്തിനു നേർ അനുപാതത്തിൽ ആകുന്നു. (1)
- 20. ന്യൂട്ടന്റെ രണ്ടാം ചലനനിയമം പ്രസ്താവിക്കുക. ഇതുപയോഗിച്ച് ബലത്തിന്റെ സമവാകൃം രൂപീകരിക്കുക.
- 21. (a) രേഖീയചലനത്തിലെ ബലത്തിനു സമാനമായി പരിക്രമണ ചലനത്തിലെ സാദൃശ്യ അളവ്ഏതാണ് ? (1)
 - (b) വിജാഗിരിയിൽ ബലം പ്രയോഗിച്ച് ഒരു വാതിൽ തുറക്കുകയോ അടയ്ക്കുകയോ ചെയ്യുന്നത് ദുഷ്കരമാണ്. എന്തുകൊണ്ട് ? (2)
- 22. M മാസ്സാം R ആരമുള്ളതുമായ ഒരു വൃത്തതകിടിനു ലംബമായി കേന്ദ്രത്തിലൂടെ കടന്നു പോകുന്ന അക്ഷത്തിലെ മൊമന്റ് ഓഫ് ഇനർഷ്യ $\frac{\mathrm{MR}^2}{2}$ ആകുന്നു.
 - (a) മുകളിൽപ്പറഞ്ഞിരിക്കുന്ന തകിടിന്റെ ആരമിക ഭ്രമണം (Radius of gyration) എന്താണ് ? (1)
 - (b) മൊമന്റ് ഓഫ് ഇനർഷ്യയുടെ ലംബസിദ്ധാന്തം ഉപയോഗിച്ച് വൃത്തിതകിടിന്റെ വ്യാസത്തിനെ അവലംബിച്ചുള്ള മൊമന്റ് ഓഫ് ഇനർഷ്യയുടെ സമവാക്യം രൂപീകരിക്കുക.

23.	(a)	Define orbital velocity of satellite.	(1)
	(b)	Derive an expression for orbital velocity.	(2)
24.	(a)	Write any two postulates of kinetic theory of gases.	(2)
	(b)	Write an equation for average kinetic energy of a molecule in terms of absolute	

temperature. (1)

Answer any 5 questions from 25 to 35. Each carries 4 scores. $(5 \times 4 = 20)$

25. (a) A and B are two vectors acting at an angle θ as shown in figure. Redraw the figure and mark the resultant vector R. (1)

- (b) Write the magnitude of the resultant vector R. (1)
- (c) Two forces A and B of magnitudes 6N and 8N are acting perpendicular to each other. Find the magnitude of the resultant force. (2)
- 26. A projectile is projected with a velocity V_0 making an angle θ with horizontal. Derive equations for maximum height and time of flight for a projectile.
- 27. (a) Define impulsive force. Give one example for it. (2)
 - (b) A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of 12 ms⁻¹. If the mass of the ball is 0.15 kg, determine the impulse imparted to the ball. (Assume linear motion of the ball) (2)

FY-324

8

- 23. (a) ഒരു ഉപഗ്രഹത്തിന്റെ ഓർബിറ്റൽ പ്രവേഗം എന്തെന്ന് നിർവചിക്കുക. (2)
 - (b) ഓർബിറ്റൽ പ്രവേഗത്തിന്റെ സമവാക്യം രൂപീകരിക്കുക. (2)
- 24. (a) വാതകങ്ങളുടെ ഗതികസിദ്ധാന്തത്തിന്റെ ഏതെങ്കിലും രണ്ട് അടിസ്ഥാന തത്വങ്ങൾ എഴുതുക. (2)
 - (b) കേവല താപനില ഉൾപ്പെടുത്തി ഒരു തന്മാത്രയുടെ ശരാശരി
ഗതികോർജ്ജത്തിന്റെ സമവാകൃം അഴുതുക.(1)

25 മുതൽ 35 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 4 സ്കോർ വീതം. ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (5 × 4 = 20)

25. (a) ചിത്രത്തിൽ കാണിച്ചിരിക്കുന്ന A, B എന്ന രണ്ട് സദിശങ്ങൾക്കിടയിലുള്ള കോൺ
 'θ' ആകുന്നു. ചിത്രം വരച്ച് പരിണത സദിശം R അടയാളപ്പെടുത്തുക. (1)

- (b) പരിണത സദിശം R ന്റെ അളവ് എഴുതുക.
- (c) 6N, 8N എന്നീ അളവുകളുള്ള A, B എന്ന ബലങ്ങൾ പരസ്പരം ലംബങ്ങളാണ്.
 പരിണത ബലത്തിന്റെ അളവ് കാണുക. (2)
- 26. തിരശ്ചീനതലവുമായി 'θ' കോണളവിൽ V₀ പ്രവേഗത്തിൽ ഒരു പ്രൊജക്ടൈൽ വിക്ഷേപിക്കപ്പെടുന്നു. ഈ പ്രൊജക്ടൈലിന്റെ പരമാവധി ഉയരവും പറക്കൽ സമയവും കാണുന്നതിനുള്ള സമവാകൃം രൂപീകരിക്കുക.
- 27. (a) ആവേഗബലം എന്തന്ന് നിർവചിക്കുക. ഇതിന് ഒരു ദാഹരണം എഴുതുക. (2)
 - (b) 12 ms⁻¹ വേഗത്തിൽ ഒരു ബൗളർ എറിഞ്ഞ പന്ത് അതേവേഗത്തിൽ ബാറ്റ്സ്മാൻ ബൗളറുടെ നേരേ തിരിച്ചടിക്കുന്നു. പന്തിന്റെ മാസ് 0.15 kg ആയാൽ പന്തിനു ലഭിക്കുന്ന ആവേഗം എത്രയെന്ന് കണക്കാക്കുക. (പന്തിന്റേത് രേഖീയ ചലന മാണെന്ന് കരുതുക.). (2)

FY-324

Р.Т.О.

(1)

28.	(a)	State the principle of conservation of mechanical energy.	(1)
	(b)	Prove the principle of conservation of mechanical energy in the case of a freely falling body.	(3)
29.	(a)	Derive an equation for the potential energy of a stretched spring.	(2)
	(b)	Draw a graph showing the variation of kinetic energy and potential energy with displacement in the case of a spring obeying Hooke's law.	(2)
30.	(a)	Write the equation connecting acceleration due to gravity (g) and universal gravitational constant (G).	(1)
	(b)	Derive an equation for acceleration due to gravity at a depth 'd' from the surface of earth.	(3)
31.	(a)	State Pascal's Law.	(1)
	(b)	A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg. The area of cross-section of the piston carrying the load is 425 cm ² . What maximum pressure would the smaller piston have to bear ?	(3)
32.	State	and prove Bernoulli's principle.	
33.	(a)	Explain anomalous expansion of water.	(2)
	(b)	Calculate the amount of heat energy required to convert 10 kg of water at 100 °C to steam at 100 °C. (Latent heat of vaporization of water is $22.6 \times 10^5 \text{ Jkg}^{-1}$)	(2)

- 28. (a) യാന്ത്രികോർജ്ജത്തിന്റെ സംരക്ഷണനിയമം പ്രസ്താവിക്കുക. (1)
 - (b) നിർബാധം താഴേയ്ക്കുപതിക്കുന്ന ഒരു വസ്തുവിന്റെ യാന്ത്രികോർജം
 സംരക്ഷിക്കപ്പെടുന്നുവെന്ന് തെളിയിക്കുക. (3)
- 29. (a) വലിച്ചുനീട്ടപ്പെട്ട ഒരു സ്പ്രിങ്ങിന്റെ സ്ഥിതികോർജം കാണുന്നതിനുള്ള സമവാകൃം
 രൂപീകരിക്കുക. (2)
 - ഹൂക്ക് നിയമം അനുസരിക്കുന്ന ഒരു സ്പ്രിങ്ങിന്റെ സ്ഥാനാന്തരത്തിനനുസിരിച്ച് സ്ഥിതികോർജം, ഗതികോർജം എന്നിവയുടെ വൃതിയാനം കാണിക്കുന്ന ഗ്രാഫ് വരയ്ക്കുക.
 (2)
- 30. (a) ഗുരുത്വാകർഷണ ത്വരണവും (g) പ്രപഞ്ച ഗുരുത്വാകർഷണ സ്ഥിരാങ്കവും (G) ബന്ധിപ്പിക്കുന്ന സമവാകൃം എഴുതുക. (1)
 - (b) ഭൂമിയുടെ പ്രതലത്തിൽ നിന്നും 'd' ആഴത്തിലുള്ള ഗുരുത്വാകർഷണ ത്വരണം കാണുന്നതിനുള്ള സമവാകൃം രൂപീകരിക്കുക. (3)
- 31. (a) പാസ്ക്കൽ നിയമം പ്രസ്താവിക്കുക.
 - (b) പരമാവധി 3000 kg ഭാരമുള്ള കാറുകളെ ഉയർത്താൻ ഒരു ഹൈഡ്രോളിക് മോട്ടോർ വാഹന ലിഫ്റ്റ് രൂപകൽപ്പന ചെയ്യുന്നു. ഭാരം വഹിക്കുന്ന പിസ്റ്റണിന്റെ ഛേദതലപരപ്പളവ് 425 cm² ആണ്. ചെറിയ പിസ്റ്റൺ വഹിക്കേണ്ട പരമാവധി മർദ്ദം എത്രയാണ് ? (3)
- 32. ബെർണൂയി സിദ്ധാന്തം പ്രസ്താവിക്കുക. ഈ സിദ്ധാന്തം തെളിയിക്കുക.
- 33. (a) ജലത്തിന്റെ അസാധാരണ താപീയവികാസം വിശദീകരിക്കുക. (2)
 - (b) 100 °C ഉള്ള 10 kg ജലത്തെ 100 °C ലുള്ള നീരാവിയായി മാറ്റുന്നതിനാവശ്യമായ താപത്തിന്റെ അളവ് കണക്കാക്കുക.

(ജലത്തിന്റെ ബാഷ്പീകരണലീനതാപം $22.6 \times 10^5 \, {
m J \, kg^{-1}}$ (2)

FY-324

P.T.O.

(1)

- 34. With the help of a diagram derive an equation for the period of a simple pendulum.
- 35. A wave travelling along a string is described by y(x, t) = 0.005 sin (80.0 x 3.0 t), in which the numerical constants are in SI units (0.005 m, 80.0 rad m⁻¹ and 3.0 rad s⁻¹). Calculate : (a) the amplitude, (b) wavelength and (c) the period of the wave.

Answer any 3 questions from 36 to 40. Each carries 5 scores. $(3 \times 5 = 15)$

- 36. (a) State principle of homogeneity of dimensions. (2)
 - (b) The kinetic energy (K) of a body depends on its mass (m) and its velocity (v).Using the above principle derive an equation for kinetic energy. (3)
- 37. (a) Derive positon-time relation $(x = v_0 t + \frac{1}{2} at^2)$ for a uniformly accelerated body. (3)
 - (b) The velocity-time graph of a body is given below. Find the displacement of the body during the time interval 5 s to 15 s. (2)

- 38. A car of mass 'm' moves with a speed 'v' along a banked road of radius 'R'.
 - (a) Draw a diagram showing all the forces acting on the car. (2)
 - (b) Using the diagram derive an equation for the maximum safe speed. (3)

FY-324

- ഒരു ചിത്രത്തിന്റെ സഹായത്താൽ സിംപിൾ പെൻഡുലത്തിന്റെ ആവർത്തനകാല സമവാകൃം രൂപീകരിക്കുക.
- 35. ഒരു ചരടിലൂടെ സഞ്ചരിക്കുന്ന ഒരു തരംഗത്തിനെ താഴെ വിവരിച്ചിരിക്കുന്നു.
 y(x, t) = 0.005 sin (80.0 x 3.0 t). ഈ സമവാകൃത്തിലെ സ്ഥിരാങ്കങ്ങളെല്ലാം SI യൂണിറ്റിലാണ് (0.005 m, 80.0 rad m⁻¹, 3.0 rad s⁻¹) ഇതിന്റെ (a) ആയതി (b) തരംഗദൈർഘൃം (c) തരംഗത്തിന്റെ പിരീഡ് എന്നിവ കണക്കാക്കുക.

36 മുതൽ 40 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 5 സ്കോർ വീതം. ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (3 × 5 = 15)

- 36. (a) ഡൈമെൻഷന്റെ ഏകാത്മക തത്വം പ്രസ്താവിക്കുക. (2)
 - (b) ഒരു വസ്തുവിന്റെ ഗതികോർജം (K) അതിന്റെ മാസ് 'M' നേയും പ്രവേഗം 'V' യേയും ആശ്രയിക്കുന്നു. ഡൈമെൻഷൻതത്വം ഉപയോഗിച്ച് ഗതികോർജത്തിന്റെ സമവാകൃം രൂപീകരിക്കുക.
 (3)
- 37. (a) സമാന ത്വരണമുള്ള ഒരു വസ്തുവിന്റെ സ്ഥാന-സമയ സമവാകൃം ($x = v_0 t + \frac{1}{2} a t^2$) രൂപീകരിക്കുക. (3)
 - (b) ഒരു വസ്തുവിന്റെ പ്രവേഗ-സമയ ഗ്രാഫ് ചുവടെ തന്നിരിക്കുന്നു. 5 s മുതൽ 15 s വരെയുള്ള സമയ ഇടവേളയിൽ വസ്തുവിനുണ്ടായ സ്ഥാനാന്തരം കണക്കാക്കുക.

- 'm' മാസുള്ള ഒരു കാർ 'v' വേഗതയിൽ 'R' ആരമുള്ള ഒരു ബാങ്ക്ഡ് റോഡിലൂടെ സഞ്ചരിക്കുന്നു.
 - (a) ഡയഗ്രം വരച്ച് കാറിൽ അനുഭവപ്പെടുന്ന എല്ലാ ബലങ്ങളും അടയാളപ്പെടുത്തുക. (2)
 - (b) ഡയഗ്രം ഉപയോഗിച്ച് കാറിന്റെ പരമാവധി സുരക്ഷിത വേഗത കാണുന്നതിനുള്ള സമവാകൃം രൂപീകരിക്കുക. (3)

FY-324

P.T.O.

39.	(a)	State parallel axes theorem of moment of inertia.	(2)
	(b)	What is the moment of inertia of a rod of mass M and length L about an axis perpendicular to it and passing through one end?	(3)
40.	(a)	Derive an equation for acceleration due to gravity at a height 'h' above the surface of earth.	(3)
	(b)	Calculate the value of acceleration due to gravity at a height equal to half of the radius of earth from the surface of earth.	(2)

- 39. (a) മൊമന്റ് ഓഫ് ഇനർഷ്യയുടെ സമാന്തര അക്ഷ സിദ്ധാന്തം പ്രസ്ലാവിക്കുക. (2)
 - (b) 'M' മാസ്സും 'L' നീളമുള്ളതുമായ ഒരു ദണ്ഡിന്റെ ഏതെങ്കിലും ഒരഗ്രത്തിലൂടെ ദണ്ഡിനു ലംബമായി കടന്നുപോകുന്ന അക്ഷത്തെ ആധാരമാക്കിയുള്ള മൊമന്റ് ഓഫ് ഇൻർഷ്യ കണക്കാക്കുക.
 (3)
- 40. (a) ഭൂമിയുടെ പ്രതലത്തിൽ നിന്നും 'h' ഉയരത്തിലുള്ള ഭൂഗുരുത്വാകർഷണ ത്വരണം കാണുന്നതിനുള്ള സമവാക്യം രൂപീകരിക്കുക. (3)
 - (b) ഉയരം, ഭൂമിയുടെ ആരത്തിന് പകുതിയായ ഒരുബിന്ദുവിലെ ഭൂഗുരുത്വാകർഷണ ത്വരണം കണക്കാക്കുക. (2)