1

Second Degree Equations

- 1) Form the equations in the following cases.
 - a) The sum of a number and its square is 12
 - b) When a number is subtracted from its square results 20
 - c) The sum of the square of a number and two times that number is 63
 - d) Product of two consecutive odd numbers is 63.
 - e) The sum of a number and its reciprocal is $\frac{10}{3}$.

Answers

- a) If the number is x then $x^2 + x = 12$
- b) If the numebr is x then $x^2 x = 20$
- c) If the numebr is x then $x^2 + 2x = 63$
- d) Numbers are x, x + 2then $x(x + 2) = 63, x^2 + 2x = 63$
- e) If the number is xthen $x+\frac{1}{x}=\frac{10}{3}$ $\frac{x^2+1}{x}=\frac{10}{3}$ $3(x^2+1)=10x,$

$$3x^2 - 10x + 3 = 0$$

- 2) The square of a number is 16.
 - a) What are the numbers?
 - b) Take the number as \boldsymbol{x} and form an equation
 - c) Can the square of a real number -16? Explain.

Answers

- a) Numbers are 4, -4
- b) If the number is x then $x^2 = 16$
- c) No real number exist with its square a negative number. The square of -4 and the square of +4 is 16.
- 3) The sum of a number and its square is 30.
 - a) If the number is x, form an equation.
 - b) What is the positive number x m?
 - c) Can more than one number satisfying this condition?

- a) If the number is x then $x^2 + x = 30$
- b) x = 5
- c) $5^2 + 5 = 30, (-6)^2 + (-6) = 30$. Numbers are 5, -6

- 4) x is an odd number greater than 1.
 - a) What are the odd numbers nearer to \boldsymbol{x}
 - b) If the product of those numbers is 45, form an equation.
 - c) Find the numbers.

a) Odd number is x . The numbers nearer to it are x-2, x+2

b)
$$(x-2)(x+2) = 45$$

 $x^2 - 4 = 45, x^2 = 49$

c) x = 7

Numbers are 5,9

- 5) If the sides of a square are reduced by 1 , the area becomes 100.
 - a) If the side of the first square before reducing is \boldsymbol{x} , form an equation.
 - b) Find the side of the square.
 - c) What will be the perimetre of the new square.

Answers

a) If one side is xthen $(x-1)^2=100$

b)
$$x - 1 = \sqrt{100} = 10, x = 11$$

c) Perimetre decreases by 4

¹Compiler : John P.A, sjpuzzles@gmail.com , jpavpz@gmail.com | 9847307721

1

Second Degree Equations

1) The chords AB and CD meet at a point P inside the circle. $CD=21 {\rm cm},\, PC=5 {\rm cm}.$

- a) What is PD?
- b) If PA = x + 1 and PB = x 1then form an equation
- c) Find the lenght ${\cal P}{\cal A}$ and ${\cal P}{\cal B}$.

Answers

- a) PD = 21 5 = 16cm
- b) $PA \times PB = PC \times PD$ $(x+1)(x-1) = 5 \times 16 = 80$ $x^2 - 1^2 = 80, x^2 - 1 = 80$
- c) $x^2 1 = 80 \rightarrow x^2 = 81, x = 9$
- d) PA = 9 + 1 = 10cm,PB = 9 1 = 8cm
- 2) The product of two consecutive even numbers is $360\,$
 - a) If the odd number in between these numbers is \boldsymbol{x} then write the numbers .
 - b) Form an equation using the given condition.
 - c) Find the numbers.

- a) Numbers are x 1, x + 1
- b) $(x-1)(x+1) = 360, x^2 1 = 360$
- c) $x^2 = 361, x = \sqrt{361} = 19$. Numbers 19 1 = 18, 19 + 1 = 20
- 3) Consider the arithmetic sequence $5, 9, 13, 17, 21 \cdots$.
 - a) Write the algebraic form of this sequence.
 - b) What is the position of the term in the sequence whose square is 625?
 - c) Is 36 a term of this sequence . How can you realize it ?

d) What is the position of 49in this sequence?

Answers

a)
$$x_n = dn + (f - d) = 4n + (5 - 4) = 4n + 1$$

b)
$$(4n+1)^2 = 625,4n+1 = \sqrt{625} = 25,4n = 24,n = 6$$

- c) All terms are odd numbers . The even number 36 cannot be a term of this sequence
- d) 4n + 1 = 49, 4n = 48, n = 12.12 th term is 49
- 4) Three boxes in which dates of a calandar are given.

- a) If B = x find A, C
- b) If $A \times C = 120$ form an equation.
- c) Find ${\cal B}$
- d) Find A and C

Answers

a)
$$A = x - 1, C = x + 1$$

b)
$$(x-1)(x+1) = 120, x^2 - 1 = 120, x^2 = 121$$

c)
$$x = \sqrt{121} = 11, B = 11$$

d)
$$A = 10, C = 12$$

- 5) Sum of the areas of two squares is 130. Side of one square is 2 more than the side of the other square
 - a) If the side of the small square is x then what is the side of the big square?
 - b) Form a second degree equation using the condition.

Answers

a) Side of the big square is x+2

b)
$$x^2 + (x+2)^2 = 130$$

 $x^2 + x^2 + 4x + 4 = 130, 2x^2 + 4x + 4 - 130 = 0, 2x^2 + 4x - 126 = 0$

1

Second Degree Equations

- 1) Consider two adjacent even numbers
 - a) If one of them is \boldsymbol{x} then what is the other?
 - b) If the product is 120 then write a second degree equation.
 - c) Convert this equation as a completed square by suitable changes
 - d) Find the numbers .

Answers

- a) x + 2
- b) x(x+2) = 120 $x^2 + 2x = 120$
- c) Add 1on both sides $x^2+2x+1=120+1$ $(x+1)^2=121$
- d) $x+1=\sqrt{121}=11,11,x+1=11,x=10$ Even numbers are 10,12
- 2) Length of a rectangle is 8 more then its breadth.
 - a) If the breadth is \boldsymbol{x} then what is its length?
 - b) If the area is $240\,\,\mathrm{sq.cm}$ form a second degree equation.
 - c) Calculate the lenght and breadth

- a) Length= x+8
- b) $x(x+8) = 240, x^2 + 8x = 240$
- c) Add $(\frac{8}{2})^2$ on both sides. It is 16 $x^2+8x+16=240+16$ $(x+4)^2=256, x+4=\sqrt{256}=16, x=16-4=12$ Breadth 12 cm,Length 12+8=20cm
- 3) In the figure AB is the diametre of the semicircle. AB is perpendicular to PC.Also,AP=BP+5, PC=6.

- a) Write the relation between the lenghts PA,PB and PC
- b) If PB = x then write an equation connecting the lengths PA, PB and PC
- c) What is the length of PB?
- d) What is the radius of this circle.വൃത്തത്തിന്റെ ആരമെത്ര?

a)
$$PA \times PB = PC^2$$

b)
$$(x+5) \times x = 6^2$$
, $x^2 + 5x = 36$
 $x^2 + 5x + (\frac{5}{2})^2 = 36 + (\frac{5}{2})^2$
 $(x+\frac{5}{2})^2 = 36 + \frac{25}{4}$
 $(x+\frac{5}{2})^2 = \frac{169}{4}$
 $(x+\frac{5}{2}) = \sqrt{\frac{169}{4}} = \frac{13}{2}$
 $x = \frac{13}{2} - \frac{5}{2} = 4$

c)
$$PB=4$$
 $AP=4+5=9, AB=9+4=13$ Radius $=12 \, \mathrm{cm}$

- 4) Consider the sequence of even numbers $2,4,6,8\cdots$.
 - a) What is its algebraic form?
 - b) How many terms from the beginning in the order makes the sum 210?

Answers

a)
$$x_n = 2n$$

b)
$$n(n+1)=210, n^2+n=210$$

 $n^2+n+\frac{1}{4}=210+\frac{1}{4}$
 $(n+\frac{1}{2})^2=\frac{841}{4}$
 $n+\frac{1}{2}=\sqrt{\frac{841}{4}}=\frac{29}{2}$
 $n=\frac{29}{2}-\frac{1}{2}=14$

The sum of the first 14 even numbers is 210

- 5) The smallest side of a right angled triangle is 4 less than its hypotenuse. Third side is 2 more than the smallest side.
 - a) If the smallest side is \boldsymbol{x} what are the other two sides.
 - b) Write an equation connecting the length of the sides .
 - c) What is the length of the smallest side?
 - d) Find the length of other sides of the triangle.

a) If the smallest side is x then hypotenuse is =x+4, third side is x+2

b)
$$(x+4)^2 = (x+2)^2 + x^2$$
, $x^2 + 8x + 16 = x^2 + 4x + 4 + x^2$
 $x^2 - 4x - 12 = 0$

c)
$$x^2 - 4x = 12, x^2 - 4x + 4 = 12 + 4$$

 $(x-2)^2 = 16, x-2 = 4, x = 6$
Smallest side is 6

d) Sides are 6, 8, 10

1

Second Degree Equations

- 1) 1 is added to the product of two cosecutive even numbers gives 289
 - a) If one number is x then what is the other number?
 - b) Form an equation
 - c) Find the numbers by solving the equation

Answers

- a) x + 2
- b) x(x+2) + 1 = 289 $x^2 + 2x + 1 = 289$
- c) $(x+1)^2=289, X+1=\sqrt{289}=17, x=16$ Numbers are 16,18
- 2) 9 added to the product of two cosecutive multiples of 6 gives 729.
 - a) If n is a multiple of 6 then what is the next multiple of 6
 - b) Write an equation
 - c) Find the numbers

Answers

- a) n + 6
- b) n(n+6) + 9 = 729 $n^2 + 6n + 9 = 729$
- c) $(n+3)^2 = 729, n+3 = \sqrt{729} = 27, n=27-3=24$ Numbers are 24, 28
- 3) Consider the arithmetic sequence $5, 7, 9 \cdots$?
 - a) Write the algebraic form of this sequence?
 - b) Form an equation to find the number of terms which make the sum 140
 - c) How many terms make the sum 140?

- a) $x_n = dn + (f d) = 2n + 3$
- b) Suppose that n terms make the sum 140. $(x_1+x_n)\times \frac{n}{2}=140$ $(5+2n+3)\times \frac{n}{2}=140, (8+2n)\times \frac{n}{2}=140$ $n^2+4n=140, n^2+4n+2^2=144, (n+2)^2=144, n+2=\sqrt{144}=12, n=12-2=10.$
- c) Sum of first 10 terms is 140

- 4) 16 added to the sum of first few terms of the arithmetic sequence $9,11,13\cdots$ gave 256
 - a) Form an equation to the number of terms
 - b) Calculate the number of terms which make the sum $256\,$

a) Suppose that the sum of the first n terms is $256. \\ n$ th term is 2n+7

b)
$$(x_n + x_n) \times \frac{n}{2} + 16 = 256, (9 + 2n + 7) \times \frac{n}{2} + 16 = 256$$

 $(16 + 2n) \times \frac{n}{2} + 16 = 256$
 $n^2 + 8n + 16 = 256$
 $(n + 4)^2 = 256, n + 4 = \sqrt{256} = 16, n = 12.$

c) First 12 terms and 16 added make the sum 256

1

Second Degree Equations

- 1) One side of a rectangle is 2 more than other side. Area of the rectangle is 120 square metre .
 - a) Take one side as x then form a second degree equation.
 - b) Find the sides of the rectangle

Answers

- a) Sides are x and x + 2 $x(x + 2) = 120, x^2 + 2x = 120$
- b) $x^2+2x+1=121, (x+1)^2=121, x+1=\sqrt{121}=11, x=10$ Sides are $10\,\mathrm{cm}$ and $12\,\mathrm{cm}$
- 2) One side of a triangle is 6 more than altitude to the side. Area of the triangle is 216
 - a) Form a second degree equation by taking one measure as \boldsymbol{x}
 - b) Find the side and altitude to that side of the triangle

Answers

- a) Altitude is x and one side is x+6 $\frac{1}{2}\times x(x+6)=216, x(x+6)=2\times 216=432$
- b) $x^2 + 6x = 432, x^2 + 6x + 9 = 432 + 9 = 441, (x+3)^2 = 441, x+3 = \sqrt{441} = 21, x = 21 3 = 18$ Altitude = 18cm and side 24cm.
- 3) The picture given below is the section of a calendar page. A,B,C,D are the numbers representing the days.
 - a) If the smallest number is x then what are other numbers
 - b) If $A \times C = 105$ then form a second degree equation
 - c) Find the numbers in the squares

- a) A = x, B = x + 1, D = x + 7, C = x + 8
- b) $A \times C = 105, x(x+8) = 105, x^2 + 8x = 105$
- c) $x^2 + 8x + 16 = 105 + 16 = 121$, $(x + 4)^2 = 121$, $x + 4 = \sqrt{121} = 11$, x + 4 = 11 4 = 7A = 7, B = 8, D = 14, C = 15
- 4) Hypotenuse of a right triangle is 4 more than its smallest side. Third side is 2 less than hypotenuse.
 - a) If the smallest side is \boldsymbol{x} then what are the other sides?
 - b) Form a second degree equation connecting the sides

c) Calculate the sides of the triangle

Answers

- a) Hypotenuse is x+4, other side is x+2
- b) Using Pythagorous theorem $(x+4)^2=x^2+(x+2)^2$ $x^2+8x+16=x^2+x^2+4x+4$ $x^2-4x=12$
- c) $x^2 4x + 4 = 16, (x 2)^2 = 16, x 2 = 4, x = 6$ Sides are 6, 8, 10

1

1

Concepts

We are discussing the process of solving a second degree equation using the colpleting the square method. As the generalization of this method we can establish a formula to solve the second degree equation. It is not necessary to use the formula for solving the second degree equation.

In the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1) The difference between the length of the perpendicular sides of a right triangle is 10, area of the triangle is 600 square cm. ആണ്.
 - a) One of the perpendicular sides is \boldsymbol{x} then what is the length of the other?
 - b) Form an equation using the given condition.
 - c) What is the length of the perpendicular sides?
 - d) Calculate the perimetre of the triangle.

Answers

a)
$$x + 10$$

b)
$$\frac{1}{2} \times x \times (x+10) = 600$$

 $x^2 + 10x = 1200$
 $x^2 + 10x - 1200 = 0$

c)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-10 \pm \sqrt{10^2 - 4 \times 1 \times -1200}}{2 \times 1}$
 $x = \frac{-10 \pm \sqrt{4900}}{2 \times 1}$

x=30,-40. Length of the side cannot be a negative quantity. x=30cm.

Parpendicular sides are $30\mathrm{cm}$, $40\mathrm{cm}$.

d) Hypotenuse =
$$\sqrt{30^2 + 40^2} = \sqrt{2500} = 50$$
cm Perimetre= $30 + 40 + 50 = 120$ cm.

- 2) Perimetre of a rectangle is $82 \, \mathrm{cm}$, area $400 \, \mathrm{sq.cm}$
 - a) What is the total length of the adjacent sides?
 - b) If one side is \boldsymbol{x} then what is the length of the other side?
 - c) Form a second degree equation using the given condition.
 - d) Calculate the length of the sides.

a)
$$2(length + breadth) = 82, l + b = 41$$

b) If one side is \boldsymbol{x} , the other side will be $41-\boldsymbol{x}$

c)
$$x(41-x) = 400, -x^2 + 41x = 400, x^2 - 41x + 400 = 0$$

d)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-41) \pm \sqrt{(-41)^2 - 4 \times 1 \times 400}}{2 \times 1}$$

$$x = \frac{41 \pm \sqrt{1681 - 1600}}{2 \times 1}$$

$$x = \frac{41 \pm \sqrt{81}}{2 \times 1}$$

$$\frac{41 \pm 9}{2} = 25, 16$$

If one side is $16~\mathrm{cm}$ and other side will be $41-16=25\mathrm{cm}$

3) In triangle ABC, $AB=AC=13 \, \mathrm{cm}$, area of the triangle is $60 \, \mathrm{sq.cm}$. The perpendicular distance from A to BC is AD.

- a) If BD = xthen what is AD?
- b) Form a second degree equation using BC, AD, and area.
- c) What is the length of BC?
- d) What is the perimetre of the triangle?

Answers

a)
$$AD = \sqrt{13^2 - x^2}$$

b)
$$\frac{1}{2} \times BC \times AD = 60$$

 $\frac{1}{2} \times 2x \times \sqrt{13^2 - x^2} = 60$
 $x\sqrt{13^2 - x^2} = 60$

Squaring on both sides , $x^2(169-x^2)=3600$ If $x^2=y$, y(169-y)=3600, $y^2-169y+3600=0$.

c) Solving
$$y = 144, 25$$
.

If
$$x^2 = 144$$
, $x = 12, -12$.

If
$$x^2 = 25, x = 5, -5$$

If
$$x = 12$$
, $BC = 24$ cm.

If
$$x = 5$$
, $BC = 10$ cm

- d) Perimetre of the triangle 13 + 13 + 10 = 36cm or 13 + 13 + 24 = 50cm
- 4) The perimetre of a right triangle is 60 cm, hypotenuse is 25cm
 - a) What is the total length of the perpendicular sides?

- c) Form an equation using the length of the sides
- d) Calculate the area of the triangle.

- a) Length of the perpendicular sides is 60 25 = 35 cm
- b) If one perpendicular side is x then the other perpendicular side is 35-x

c)
$$25^2 = x^2 + (35 - x)^2$$

 $x^2 - 35x + 300 = 0$

d) Solving , x=20,15. If x=20 other perpendicular side is 35-20=15. Area $=\frac12\times20\times15=150$ sq.cm

- 5) The difference between the length of the sides of two squares is $4 \, \mathrm{cm}$. The sum of the areas is $400 \, \mathrm{sq.cm}$
 - a) If the side of the small square is x then what is the side of the other square?
 - b) Form an equation using the given condition.
 - c) Calculate the side of the squares.

Answers

a)
$$x + 4$$

b)
$$x^2 + (x+4)^2 = 400$$

 $x^2 + x^2 + 8x + 16 = 400$
 $2x^2 + 8x - 384 = 0$
 $x^2 + 4x - 192 = 0$

c) Solving x=12,-16. Length of the side of one square is 12, length of the side of other square is 12+4=16cm

¹Compiler: John P.A, sjpuzzles@gmail.com, jpavpz@gmail.com | 9847307721

1

Concepts

We are discussing the process of solving a second degree equation using the completing the square method. As the generalization of this method we can establish a formula to solve the second degree equation. It is not necessary to use the formula for solving the second degree equation.

In the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1) The age of a man after 15 years would be the square of his age before 15 years.
 - a) If the present age is \boldsymbol{x} , form a second degree equation
 - b) Find the present age.
 - c) Without using algebra find the present age .

Answers

a)
$$(x-15)^2 = (x+15)$$

 $x^2 - 30x + 225 = x + 15$
 $x^2 - 31x + 210 = 0$

b)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-31) \pm \sqrt{(-31)^2 - 4 \times 1 \times 210}}{2 \times 1}$
 $x = \frac{31 \pm \sqrt{961 - 840}}{2}$
 $\frac{31 \pm 11}{2} = 21, 10$

- c) x values are 21, 10. The value of x = 10 cannot be admissible. Present age is 21 years.
- d) While considering the age before and after 15 years there will be a gap of 30years. The perfect square just above 30 is 36.

 15 years below 36 is 21, 15years below 21 is 6. The square of 6 is 36. The present age
- 2) Manju's present age is the square of Laya's age. After 5 years Manju's age become 3 times Laya's age.
 - a) If Laya's present age is x form a second degree equation.
 - b) Find the present age of both.

is 21

c) How many years later the age of Manju become two times Laya's age?

- a) Laya's present age is =x. manju's present age is $=x^2$. Laya's age after five years is =x+5,Manju's age after five years is $=x^2+5$. $x^2+5=3(x+5), x^2+5=3x+15, x^2-3x-10=0$
- b) $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ $x=\frac{-(-3)\pm\sqrt{(-3)^2-4\times1\times-10}}{2\times1}$ $x=\frac{3\pm7}{2}=5,-2$ Laya's present age is 5 years .Manju's present age is 25 years
- c) Suppose that after n years Manju's age become two times Laya's age . $(5+n)\times 2=25+n, n=15$ After 15 years Manju's age become two times Laya's age .
- 3) One year ago, Ajayan's age was 8 times his son's age.Present age of Ajayan is the square of his son's present age.
 - a) If son's age before 1 year is \boldsymbol{x} what was Ajayans age one year ago.
 - b) Form a second degree equation using the given condition.
 - c) Calculate their present age.

Answers

- a) Son's age before one year is x, Ajay's age is 8x.
- b) Present age of son =x+1, Ajay's present age =8x+1 $(x+1)^2=8x+1, x^2+2x+1-8x-1=0, x^2-6x=0$,
- c) x(x-6)=0, x=6,0 We can take x value 6. Son's present age x+1=7, Ajay's present age is $8\times 6+1=49$
- 4) The sum of the ages of a father and son is 45.5 years ago the product of their ages was 124.
 - a) If father's present age is x what is son's present age?
 - b) Form a second degree equation using the given condition.
 - c) Find the their present age.

- a) Son's present age =45-x
- b) Fathers age before fice years =x-5, Sons's age before five years =40-x (x-5)(40-x)=124, $x^2-45x+324=0$
- c) $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ $x = \frac{-(-45) \pm \sqrt{(-45)^2 - 4 \times 1 \times 324}}{2 \times 1}$ $x = \frac{45 \pm \sqrt{729}}{2}$ x = 36, 9Fathers age = 36, Son's age = 9
- 5) Nasrin's age is two times Riswan's age. Four years hence the product of their ages become 160.

- b) Form a second degree equation using the given condition.
- c) Calculate their present age.

- a) Riswan's age =x, Nasrin's age =2x
- b) Nasrin's age after four years =x+4, Riswan's age after four years =2x+4 (x+4)(2x+4)=160 $2x^2+12x+16=160$ $2x^2+12x-144=0$

$$x^{2} + 6x - 72 = 0$$
c)
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^{2} - 4 \times 6 \times - 72}}{2 \times 1}$$

x = 6, -12. Riswan's age = 6, Nasrin's age = 12.

1

Concepts

We are discussing the process of solving a second degree equation using the completing the square method. As the generalization of this method we can establish a formula to solve the second degree equation. It is not necessary to use the formula for solving the second degree equation.

In the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Worksheet 41

- 1) The speed of a boat in still water is $8~\rm km$ in an hour.The boat travels $15~\rm kilometre$ in upstream and $22~\rm kilometre$ in downstream in $5~\rm hours$.
 - a) If the speed of the stream is x what will be the speed attained by the boat in the downstream.
 - b) If the speed of the stream is x what will be the resulting speed inn the upstream?
 - c) Form an equation using the given condition.
 - d) Calculate the speed of the stream.

Answers

- a) 8 + x
- b) 8 x
- c) Speed of boat in the downstream journey= 8+x. Time taken for the downward journey is $\frac{22}{8+x}$

Speed of boat in the upstream journey= 8-x. Time taken for the downstream journey= $\frac{15}{2}$

journey
$$\frac{15}{8-x}$$
 $\frac{15}{8-x} + \frac{22}{8+x} = 5$ $\frac{15(8+x)+22(8-x)}{8^2-x^2} = 5$ $5x^2-7x-24=0$.

d)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times 5 \times - 24}}{2 \times 5}$$

$$x = \frac{7 \pm \sqrt{529}}{10}$$

$$\frac{7 + 23}{10} = 3$$
 speed of stream 3 km/h

- 2) A train travels with uniform speed in 300 km.lf the speed of the train is increased by 5 km per hour, the journey would have taken 2 hours less.
 - a) If the usual speed is x what will be the time taken for the journey.
 - b) If the speed is increased by $5~\mathrm{km}$ per hour what will be the time taken for the journey?
 - c) Form an equation using the given condition.
 - d) Calculate the speed of the train.

- a) $\frac{300}{x}$
- b) $\frac{300}{x+5}$

c)
$$\frac{300}{x} - \frac{300}{x+5} = 2$$

 $\frac{\frac{1}{x} - \frac{1}{x+5}}{\frac{1}{x} - \frac{1}{x+5}} = \frac{2}{300}$
 $\frac{\frac{1}{x} - \frac{1}{x+5}}{x^2 + 5x - 750} = 0$

d)
$$x=\frac{-5\pm\sqrt{5^2-4\times1\times-750}}{2a}$$
 $x=25,-30.$ Usual speed of train 25 km/h.

- 3) There are 64 small squares in a chess board.The area of one small square is 6.25 sq.cm.There is a boarder of width $2 \mathrm{cm}$ around the chess board squares.
 - a) If the length of the board is x what will be the total area of small squares?
 - b) Form a second degree equation using the given condition.
 - c) Calculate the length of the chess board.

Answers

a) On subtracting 2 from both sides area of the square formed by 64 small squares is $(x-4)^2$

b)
$$(x-4)^2 = 6.25 \times 64$$

 $x^2 - 8x + 16 = 400$
 $x^2 - 8x - 384 = 0$

c)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 1 \times -384}}{2 \times 1}$
 $x = 24, -16.$

Side of the chess board is 24 cm

- 4) In a group of children each child gives a gift to every other child. If the total number . of gifts is 132, then
 - a) If the number of children is n then how many gifts each child give other children.
 - b) Form an equation using the given condition.
 - c) calculate the number of children in the group.

- a) n-1 gifts should be given by a child
- b) Total number of gifts is n(n-1)=132 $n^2-n-132=0$

c)
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=\frac{-(-1)\pm\sqrt{(-1)^2-4\times1\times-132}}{2\times1}$$

$$\frac{1\pm\sqrt{529}}{2}$$
 $x=12,-11.$ Number of children $=12$

- 5) Teacher asked the children to draw a rectangle of area $5\,$ sq.cm and perimetre $8\,$ cm. Manju , a good student made a comment that it is possible to draw such a square after some algebraic calculations.
 - a) If one side of the reactangle is x then what will be the other.
 - b) Form a second degree equatio.
 - c) Prove that it is not possible to construct such a rectangle.

Answers

a)
$$2(l+b)=8,$$
 $l+b=4$
ഒരു വശം x ആയാൽ മറ്റേ വശം $4-x$

b)
$$x(4-x) = 5, -x^2 + 4x - 5 = 0, x^2 - 4x + 5 = 0$$

c)
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 $b^2-4ac=-4$. $\sqrt{b^2-4ac}$ is not a real number. Side is not real.Rectangle cannot be constructed.

1

1

Concepts

We are discussing the process of solving a second degree equation using the completing the square method. As the generalization of this method we can establish a formula to solve the second degree equation. It is not necessary to use the formula for solving the second degree equation.

In the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1) The participants of a meeting gave hanshakes to each other. It is found that there are 190 handshakes in total.
 - a) If there are n participants, what is the number of handshakes given by a participant to others?
 - b) Form a second degree equation using the number of participants and the number of handshakes.
 - c) Calculate the number of participants of the meeting.

a)
$$n-1$$

b)
$$\frac{n(n-1)}{2} = 190$$

 $n^2 - n - 380 = 0$

c)
$$n=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=\frac{-(-1)\pm\sqrt{(-1)^2-4\times1\times-380}}{2\times1}$$

$$x=\frac{1\pm\sqrt{1521}}{2\times1}$$

$$n=20,-14, \text{ Number of participants is } 20$$

- 2) If the price of a book is reduced by $5\ \mathrm{rupees}$ a person can buy $5\ \mathrm{more}$ books for $300\ \mathrm{rupees}$.
 - a) If the original price of the book is x, how many books can be purchased for 300 rupees?
 - b If the price is decreased by 5 how many books can be purchased in 300 rupees
 - c) Form a second degree equation using the given condition.
 - d) Calculate the original price of the book

- a) $\frac{300}{x}$
- b) If the price is x-5, the number of books $=\frac{300}{x-5}$

c)
$$\frac{300}{x-5} - \frac{300}{x} = 5$$

 $\frac{300x - 300x + 1500}{x(x-5)} = 5$
 $x^2 - 5x - 300 = 0$

d)
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=\frac{-(-5)\pm\sqrt{(5)^2-4\times1\times-300}}{2\times1}$$
 $x=20,-15.$ The original price of the book is 20 rupees

- 3) The perimetre of a rectangle is $82 \, \mathrm{cm}$, area $400 \, \mathrm{sq.cm}$
 - a) If the length of one side is x then what is the length of other side?
 - b) Form a second degree equation
 - c) Find the sides of the rectangle.

Answers

a)
$$2(l+b)=82, l+2=41$$
. If one side is x the other side will be $41-x$

b)
$$x(41-x) = 400, -x^2 + 41x - 400 = 0, x^2 - 41x + 400 = 0$$

c)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-41) \pm \sqrt{(-41)^2 - 4 \times 1 \times 400}}{2 \times 1}$
 $x = 25, 16$

Sides are $25\mathrm{cm}$ and $16\mathrm{cm}$

- 4) The hypotenuse of a right triangle is $25 \, \mathrm{cm}$, the difference between other two sides is $5 \, \mathrm{cm}$
 - a) If one of the perpendicular sides is x what is the length of other perpendicular side?
 - b) Form a second degree equation .
 - c) Calculate the length of its sides.
 - d) Calculate the area of the triangle.

a)
$$x + 5$$

b)
$$x^2 + (x+5)^2 = 25^2$$

 $x^2 + x^2 + 10x + 25 = 625$
 $2x^2 + 10x - 600 = 0$
 $x^2 + 5x - 300 = 0$

c)
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=\frac{-5\pm\sqrt{5^2-4\times1\times-300}}{2\times1}$$
 $x=15,-20.$ perpendicular sides are $15\mathrm{cm}$ and $20\mathrm{cm}$

d) Area
$$=\frac{1}{2}\times15\times20=150$$
 sq.cm

- 5) The denominator of a fraction is 1 more than two times its numerator. The sum of the fraction and its reciprocal is $2\frac{16}{21}$.
 - a) If the numerator is \boldsymbol{x} what is its denominator.
 - b) Write the fraction in \boldsymbol{x}
 - c) Form a second degree equation using the given condition.
 - d) Find the fraction.

- a) 2x + 1
- b) Fraction is $\frac{x}{2x+1}$.

c)
$$\frac{x}{2x+1} + \frac{2x+1}{x} = 2\frac{16}{21}$$

 $\frac{x}{2x+1} + \frac{2x+1}{x} = \frac{58}{21}$
 $11x^2 - 26x - 21 = 0$

d) Solving , x=3. Fraction is $\frac{3}{2\times 3+1}=\frac{3}{7}$

1

Concepts

We are discussing the process of solving a second degree equation using the completing the square method. As the generalization of this method we can establish a formula to solve the second degree equation. It is not necessary to use the formula for solving the second degree equation.

In the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1) First term of an arithmetic sequence is 7 and common difference 3.
 - a) What is its algebraic form?
 - b) Find the sum of the first n terms
 - c) How many terms of this sequence beginning from the first term makes the sum 710?

a)
$$x_n = dn + (f - d) = 3n + (7 - 3) = 3n + 4$$

b)
$$S_n = (x_1 + x_n) \times \frac{n}{2}$$

 $S_n = (7 + 3n + 4) \times \frac{n}{2}$
 $(11 + 3n) \times \frac{n}{2} = \frac{11n}{2} + \frac{3n^2}{2}$

c)
$$\frac{3n^2}{2} + \frac{11n}{2} = 710$$

$$\frac{3n^2 + 11n}{2} = 720. \ 3n^2 + 11n - 1420 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-11 \pm \sqrt{11^2 - 4 \times 3 \times - 1420}}{2 \times 3}$$

$$x = \frac{-11 + \sqrt{17161}}{6}, n = \frac{120}{6}, \frac{-142}{6}$$

$$n = 20. \text{Twenty terms make the sum } 720$$

- 2) On joining two vertices of a polygon we get either a side or a diagonal. Consider a polygon of n sides.
 - a) How many diagonals can be drawn from a vertex?
 - b) How many diagonals are there in a polygon of n sides ?
 - c) Find the number of sides of a polygon having 35 diagonals.
 - d) Name the polygon having number of sides and diagonals equal.

a) n-3

(Joining a vertex to other vertices on either side of it forms a side of the polygon. That is , n-3 diagonals can be drawn from a vertex)

b) $\frac{n(n-3)}{2}$

(Diagonal from the vertex A to B and the diagonal from B to A are treated as a single diagonal. So we should take half of n(n-3)

- c) $\frac{n(n-3)}{2} = 35$ $n(n-3) = 70, n^2 - 3n = 70, n^2 - 3n - 70 = 0.$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times -3}}{2 \times -3}$ $\frac{3 \pm \sqrt{289}}{2}, n = 10, -7.$ The number of sides is 10
- d) Pentagon.
- 3) The points $A_1, A_2, A_3 \cdots A_n$ are marked in a circle. On joining two points we get a chord .
 - a) How many chords can be drawn from a given point to other points?
 - b) What is the total number of chords?
 - c) How many points should be marked on the circle to get 120 chords.

- a) n 1
- b) $\frac{n(n-1)}{2}$

c)
$$\frac{n(n-1)}{2}=120$$
 $n(n-1)=240$, $n^2-n-240=0$, $n=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ $n=\frac{-(-1)\pm\sqrt{(-1)^2-4\times1\times-240}}{2\times1}$ $n=\frac{1\pm\sqrt{961}}{2}$, $n=16,-15$. The number of points marked on the circle is 16

- 4) Consider the sequence of numbers which gives the remainder 3 on dividing by 4.
 - a) Write the algebraic form of this sequence?
 - b) What is the sum of first n terms of this sequence ?
 - c) How many terms from the beginning make the sum 820?
 - d) Can the sum of any 25 terms of this sequence 2020?

a) The sequence is
$$3, 7, 11 \cdots$$

$$x_n = dn + (f - d) = 4n - 1$$

b)
$$S_n = (x_1 + x_n) \times \frac{n}{2} = (3 + 4n - 1) \times \frac{n}{2} + 2n^2$$

c)
$$2n^2 + n = 820, 2n^2 + n - 820 = 0$$

$$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$2n^{2} + n = 820, 2n^{2} + n$$

$$n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$n = \frac{-1 \pm \sqrt{1^{2} - 4 \times 2 \times - 820}}{2 \times 2}$$

$$n = \frac{-1 \pm \sqrt{6561}}{4}$$

$$n = \frac{-1 \pm 81}{4}, n = 20.$$

$$n = \frac{-1 \pm \sqrt{6561}}{4}$$

$$n = \frac{4}{n = \frac{-1 \pm 81}{4}}$$
 , $n = 20$.

The sum of $20\ \mathrm{terms}$ is $820\ \mathrm{}$

- d) All terms are odd numbers. The sum of 25 odd numbers cannot be an even number.
- 5) The sum of a number and its positive square root is $\frac{6}{25}$.
 - a) If x is the number , write an equation using the given conditions.
 - b) Write the equation in the form $ax^2 + bx + c = 0$
 - c) Find the number.

Answers

a)
$$x + \sqrt{x} = \frac{6}{25}$$

b)
$$\sqrt{x} = \frac{6}{25} - x$$

 $\sqrt{x} = \frac{6 - 25x}{25}$

Squaring on both sides and solving we get in the form $ax^2 + bx + c = 0$. It is $625x^2 - c$ 925x + 36 = 0

c) Solving we get $x = \frac{1}{25}$