CHAPTER 11. CONIC SECTIONS

Focus Area Based Practice Questions

- 1. If an ellipse passing through (3,1) having foci $(\pm 4,0)$, find
 - a) the length of the major axis
 - b) the standard equation of the ellipse.
 - c) the eccentricity and length of the latus rectum.
- 2. Focii of the ellipse are $(\pm\sqrt{12}, 0)$ and vertices are $(\pm4,0)$. Find the equation of the ellipse.
- 3. The figure shows an ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$.
 - a) Find the eccentricity and focus of the ellipse.
 - b) Find the equation of the line L.
 - c) Find the equation of the line parallel to line L and passing through any one of the foci

4. The length of latus rectum of the parabola $y^2 = -8x$ is

- 5. Find the equation of the parabola with focus (6,0) and equation of the directrix is x = -6
- 6. Find the equation of the ellipse whose vertices are $(\pm 13,0)$ and foci are $(\pm 5, 0)$.
- 7. An ellipse whose major axis as x-axis and the centre (0,0) passes through (4,3) and (-1,4)
 - a) Find the equation of the ellipse

MATHEMATICS MADE EASY BY MARY M J

- b) Find its eccentricity.
- 8. Find the eccentricity and the length of latus rectum of the ellipse $4x^2 + 9y^2 = 36$.
- 9. Find the eccentricity and the length of latus rectum of the parabola x^2 + 16 y =0.
- 10. a) Find the equation of the parabola with vertex at (0,0) and focus

at (0,2).

b) Find the co-ordinates of the foci and the latus rectum of the

ellipse
$$\frac{x^2}{25} + \frac{y^2}{9} = 1.$$

CONIC SECTION FOCUS AREA VIDEO LINK:

https://youtu.be/-b25klcNzJo