MATHEMATICS MADE EASY BY MARY M J

CHAPTER 11. CONIC SECTIONS

Focus Area Based Practice Questions

1. If an ellipse passing through $(3,1)$ having foci $(\pm 4,0)$, find
a) the length of the major axis
b) the standard equation of the ellipse.
c) the eccentricity and length of the latus rectum.
2. Focii of the ellipse are $(\pm \sqrt{12}, 0)$ and vertices are $(\pm 4,0)$. Find the equation of the ellipse.
3. The figure shows an ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
a) Find the eccentricity and focus of the ellipse.
b) Find the equation of the line L.
c) Find the equation of the line parallel to line L and passing through any one of the foci

4. The length of latus rectum of the parabola $y^{2}=-8 x$ is
5. Find the equation of the parabola with focus $(6,0)$ and equation of the directrix is $x=-6$
6. Find the equation of the ellipse whose vertices are $(\pm 13,0)$ and foci are $(\pm 5,0)$.
7. An ellipse whose major axis as x-axis and the centre $(0,0)$ passes through $(4,3)$ and $(-1,4)$
a) Find the equation of the ellipse

MATHEMATICS MADE EASY BY MARY M J

b) Find its eccentricity.
8. Find the eccentricity and the length of latus rectum of the ellipse $4 x^{2}+9 y^{2}=36$
9. Find the eccentricity and the length of latus rectum of the parabola $x^{2}+16 y=0$.
10. a) Find the equation of the parabola with vertex at $(0,0)$ and focus at $(0,2)$.
b) Find the co-ordinates of the foci and the latus rectum of the

$$
\text { ellipse } \frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

CONIC SECTION FOCUS AREA VIDEO LINK:
https://youtu.be/-b25klcNzJo

