

Angles formed by an arc on the circle are

1. Central angle of an are
2. Angle on the allternate are
3. Angle within the arc

## Assignment Answer

## T.B Page 54

Q5)
Ans) Join OC
Let $\angle \mathrm{ABC}=\mathrm{x}^{0}$ and $\angle \mathrm{OAC}=\mathrm{y}^{0}$ Then $\angle A O C=2 \mathbf{x}^{0}$ and $\angle O C A=y^{0}$

In $\triangle \mathrm{AOC}$,

$$
\begin{aligned}
& 2 \mathbf{x}^{0}+\mathbf{y}^{0}+\mathbf{y}^{0}=\mathbf{1 8 0}^{0} \\
& 2 \mathrm{x}^{0}+2 \mathbf{y}^{0}=180^{0} \\
& 2\left(\mathbf{x}^{0}+\mathbf{y}^{0}\right)=180^{0} \\
& \therefore \mathrm{x}^{0}+\mathbf{y}^{0}= \frac{180^{\circ}}{2}=\mathbf{9 0}^{0}
\end{aligned}
$$



So, $\angle \mathrm{OAC}+\angle \mathrm{ABC}=\mathbf{9 0}^{\circ}$

## Construction 1

a) Draw an angle of size $22 \frac{1}{2} 0$

Ans)
Steps
Step1. Draw circle of radius 3 cm
( Any radius can be taken)
Step2. Draw radius OA
Step3. Measure $45^{\circ}$ angle at $O$
( Double of $22 \frac{1}{2}^{0}$ is $45^{\circ}$ )
Step4. Draw OB
Step5. Extend AO to meet the circle at $C$ Step6. Join CB, we get $\angle B C O$ as $22 \frac{1}{2}{ }^{o}$

b) Draw an angle of size $11 \frac{1}{4}^{0}$. Ans)
Steps
Step1. Draw circle of radius $\mathbf{3 c m}$
( Any radius can be taken)
Step2. Draw radius OA
Step3. Measure $45^{\circ}$ angle at $O \quad$ (Double of $22 \frac{1}{2}$ is $4^{\circ}$ )
Step4. Draw OB
Step5. Extend AO to meet the circle at $C$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Step6. Join CB, we get $\angle B C O$ as $22 \frac{1}{2}{ }^{o}$
Step7. With C as centre draw circle of radius 3 cm .
Step8. Extend OC to meet the circle at D
Step9. Join DE, we get $\angle E D C$ as $11 \frac{1}{4}^{\circ}$


## Construction 2

a) Draw a triangle of circum radius 3 centimetres and two of the angles $50^{\circ}$ and $60^{\circ}$.

## Ans)

## Steps

Step1. Draw circle of radius $\mathbf{3 c m}$
Step2. Draw radius OC
Step3. Measure $100^{\circ}$ angle at $O$
(Double of $50^{\circ}$ is $100^{\circ}$ )
Step4. Draw OB
Step5. Measure $120^{\circ}$ angle at $O \quad$ (Double of $60^{\circ}$ is $120^{\circ}$ )
Step6. Draw OA
Step7. Join AB, BC, AC
Step8. We get $\triangle A B C$ with $\angle A=50^{\circ}, \angle C=60^{\circ}$

b) Draw a triangle of circumradius 3 centimetres and two of the angles $57 \frac{1}{2}^{\circ}$ and $62 \frac{1}{2}^{\circ}$.

## Ans)



Double of $62 \frac{1}{2}{ }^{\circ}$ is $\left.125^{\circ}\right)$

## T B Page 58

In each problem below, draw a circle and a chord to divide it into two parts such that the parts are as specified;
i) All angles on one part $80^{\circ}$.
ii) All angles on one part $110^{\circ}$.
iii) All angles on one part half of all angles on the other.
iv) All angles on one part, one and a half times the angles on the other.

## Ans)

i) Given all angles on one part $80^{\circ}$.

So the central angle of arc $A B$ is double of $80^{\circ}=160^{\circ}$


Draw a circle.
Draw are AB with central angle $160^{\circ}$.
All angles on one part of arc $A B$ will be $80^{\circ}$.
ii) Given all angles on one part $110^{\circ}$ If angle on an arc is $110^{\circ}$, then angle on its alternate arc is $180^{\circ}-110^{\circ}=70^{\circ}$
Central angle of arc AB is $2 \times \mathbf{7 0}^{\circ}=140^{\circ}$


Draw a circle .
Draw arc AB with central angle $140^{\circ}$.
All angles on one part of the arc AB will be $70^{\circ}$ and
All angles on the other part will be $110^{\circ}$.
iiii) Given all angles on one part is half of all the angles on the other part.
So, if angle on one part is $x^{\circ}$,then angle on other part is $\mathbf{2} \mathbf{x}^{\circ}$.
We have $\mathrm{x}^{\circ}+\mathbf{2} \mathrm{x}^{\circ}=\mathbf{1 8 0}^{\circ}$

$$
3 x^{\circ}=180^{\circ}
$$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

$$
x^{\circ}=\frac{180^{\circ}}{3}=60^{\circ}
$$

Angle on one part is $60^{\circ}$.
So central angle of arc $A B$ is $2 \times 60^{\circ}=120^{\circ}$
If angle on an arc is $60^{\circ}$, then angle on its alternate arc is $120^{\circ}$.


Draw a circle .
Draw arc AB with central angle $120^{\circ}$.
All angles on one part of the are will be $60^{\circ}$ and
All angles on the other part will be $120^{\circ}$.
iv) Given all angles on one part is one and a half times the angles on the other part.
So, if angle on one part is $x^{\circ}$,
then angle on the other part is $1 \frac{1}{2} x^{\circ}=\frac{3}{2} x^{\circ}$

$$
\text { We have } \begin{aligned}
x^{\circ}+\frac{3}{2} x^{\circ} & =180^{\circ} \\
\frac{5 x}{2} & =180^{\circ} \\
5 x^{\circ} & =180^{\circ} \times 2=\mathbf{3 6 0}^{\circ} \\
x^{\circ} & =\frac{360^{\circ}}{5}=\mathbf{7 2}^{\circ}
\end{aligned}
$$

Angle on one part is $72^{\circ}$.
So central angle of arc is $2 \times 72^{\circ}=144^{\circ}$
If angle on an arc is $72^{\circ}$, then angle on its alternate arc is $180^{\circ}-72^{\circ}=108^{\circ}$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi


