Assipnment Answer

Since ABCD is an isosceles trapezium
$A D=B C$ and also
$A B$ is parallel to $D C$.

We have to prove $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ} \& \angle \mathrm{~B}+\angle \mathrm{D}=180^{\circ}$ Since ABCD is an isosceles trapezium,

$$
\begin{equation*}
\angle \mathbf{A}=\angle \mathbf{B} \tag{1}
\end{equation*}
$$

Since $\mathbf{A B} / / \mathbf{D C}$

$$
\angle A+\angle D=180^{\circ} \quad \ldots \ldots \ldots(2) \quad\left(\begin{array}{r}
\text { Co-interior angles are } \\
\text { supplementary })
\end{array}\right.
$$

From (1) \& (2) we have

$$
\angle B+\angle D=180^{\circ}
$$

Also, $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
Since the opposite angles are supplementary , ABCD is cyclic.
T. B Page 59

Q1)

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Ans) Given, $\angle \mathrm{BDC}=50^{\circ}$
So,$\angle B A C=50^{\circ}$
Given , $\angle A C D=30^{\circ}$
So, $\angle A B D=30^{\circ}$
Given, $\angle \mathrm{CBD}=45^{\circ}$
So, $\angle C A D=45^{\circ}$

Consider $\triangle \mathrm{ABC}$,
$\binom{$ All angles made by an arc on the }{ alternate arc are equal }

$$
\angle A C B=180^{\circ}-\left(50^{\circ}+\mathbf{7 5}^{\circ}\right)=180^{\circ}-125^{\circ}=55^{\circ}
$$

So $\angle \mathbf{A D B}=55^{\circ}$

Consider \triangle AOD , $\angle \mathbf{A O D}=180^{\circ}-\left(\mathbf{5 5}^{\circ}+\mathbf{4 5}^{\circ}\right)=\mathbf{1 8 0}^{\circ}-\mathbf{1 0 0}^{\circ}=\mathbf{8 0}^{\circ}$
$\angle D O C=180^{\circ}-80^{\circ}=100^{\circ}$ (Linear pair)
$\angle \mathrm{AOD}=\angle \mathrm{BOC}=80^{\circ}$ (opposite angles)
$\angle \mathrm{DOC}=\angle \mathrm{AOB}=100^{\circ}$ (opposite angles)
\therefore Angles of the quadrilateral are

$$
\angle A=45^{\circ}+50^{\circ}=95^{\circ}
$$

Angles between diagonals are
$\angle B=30^{\circ}+45^{\circ}=75^{\circ}$
$\angle \mathrm{AOD}=\angle \mathrm{BOC}=80^{\circ}$
$\angle \mathrm{DOC}=\angle \mathrm{AOB}=100^{\circ}$
$\angle C=55^{\circ}+30^{\circ}=85^{\circ}$
$\angle \mathrm{D}=50^{\circ}+55^{\circ}=105^{\circ}$

Assignment
Q1) In the figure $P Q R S$ is an isosceles trapezium and $Q R$ is extended to X.
If $<\mathbf{S R X}=100^{\circ}$,
find all angles of PQRS ?

Q2) Prove that any non- isosceles trapezium is not cyclic?

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

