Cyclic quadrilaterals are those quadrilaterals with opposite angles supplementary.

Quadrilaterals which are always cyclic are

(i) Square
(i) Rectangle
(iii) Isosceles Trapezium

Assignment Answer

(Q) Prove that any non-isosceles trapezium is not cyclic? Ans)

Given $A B C D$ is a non-isosceles trapezium
So $\angle A \neq \angle B$ 1

Since $A B C D$ is a trapezium, $A B / / C D$.
So $\angle A+\angle D=180^{\circ} \ldots \ldots$ (Co-interior angles are supplementary)
From 1 \& 2 we have $\angle B+\angle D \neq 180^{\circ}$
Since the opposite angles are not supplementary,
ABCD is not cyclic.
That is, any non- isosceles trapezium is not cyclic .

T.B page 59

Q2) Prove that any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex.
Ans)
In the figure $\angle C B E$ is an outer angle at a vertex of cyclic quadrilateral ABCD .
We have to prove $\angle \mathrm{CBE}=\angle \mathrm{ADC}$

Since $A B C D$ is cyclic

$$
\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}
$$

Also

$\angle \mathrm{ABC}+\angle \mathrm{CBE}=\mathbf{1 8 0}^{\circ}$2

(Linear pair)
From 1 \& 2 we have

$$
\begin{aligned}
\angle \mathrm{APC}+\angle \mathrm{ADC} & =\angle A \mathrm{BC}+\angle \mathrm{CBE} \\
\therefore \angle \mathrm{ADC} & =\angle \mathrm{CBE}
\end{aligned}
$$

That is any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex .

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

T.B page 60

Q6) i)

Ans)
Join PQ.
Now ABQP and PQDC becomes cyclic quadrilaterals.

Let $\angle \mathbf{A}=\mathrm{x}^{\circ}$,
Then,

$\angle P Q D=x^{\circ}$ (any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex)
Since PQDC is cyclic , $\angle \mathrm{C}=180^{\circ}-\mathrm{x}^{\circ}$
Now,
$\angle A+\angle C=\not y^{6}+180^{\circ}-\not y^{6}$
So, $\angle A+\angle C=180^{\circ}$
Since $\angle A+\angle C=180^{\circ}$ we can say $A B$ parallel to $C D$
(co-interior angles are supplementary)

Since $A B$ parallel to $C D$, and given $A C=B D$,
ABDC is an isosceles trapezium.
So ABDC is a cyclic quadrilateral.

Q6) iii)

> In the picture, the circles on the left and right intersect the middle circle at P, Q, R, S; the lines joining them meet the left and right circles at A, B, C, D. Prove that $A B D C$ is a cyclic quadrilateral.

Ans)

Draw PQ \& RS

Let $\angle B A P=x^{\circ}$, then $\angle P Q S=x^{\circ} \quad$ (any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex)

Since $\angle P Q S=x^{\circ}$, then $\angle P R S=180^{\circ}-x^{\circ} \quad$ (opposite angles of a cyclic quadrilateral are supplementary)

Since $\angle P R S=180^{\circ}-x^{\circ}$, then $\angle S D C=180^{\circ}-x^{\circ}($ any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex)

So ,

$$
\begin{aligned}
\angle \mathrm{BAP}+\angle \mathrm{SDC} & =y^{\circ}+\mathbf{1 8 0}^{\circ}-x^{\circ} \\
& =\mathbf{1 8 0}^{\circ}
\end{aligned}
$$

So considering quadrilateral ABDC,
$\angle A+\angle D=180^{\circ}$
$\angle B+\angle C=360^{\circ}-180^{\circ}=180^{\circ}$
Since opposite angles of quadrilateral ABDC are supplementary,
ABDC is a cyclic quadrilateral.

