FIRST YEAR HIGHER SECONDARY EXAMINATION SEPTEMBER-2021

SUBJECT: CHEMISTRY Qn. Code: FY 325

Qn. No.	Sub qns.	Answer Key/Value Points Score 19				Total	
Answer any 6 questions from 1 to 12. Each carries 2 scores. (6 x 2 = 12)							
1.	(a) (b)	3p 5s				1	2
2.		(a) $Cu - 1s^2 2s^2$	2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹			1	
		This is due to th	e extra stability of the completely fil	led d ¹⁰ electronic			2
		configuration.				1	
3.		Molecule	Structure	Bond angle		1	
		BF ₃	Trigonal planar (Planar triangular)	120 ⁰			2
		BeCl ₂	Linear	<u>180</u> ⁰		1	
4.		 The postulates of Kinetic Molecular Theory are: Every gas contains a large number of minute and elastic particles (atoms or molecules). The actual volume of the molecules is negligible compared to the volume of the gas. There is no force of attraction between the gas particles. The particles of a gas are in constant and random motion in straight line. During this motion they collide with each other and also with the walls of the container. The pressure of a gas is due to the wall collisions of the particles. All collisions are perfectly elastic. i.e. the total energy of particles before and after collisions remains the same. At any particular time, different particles of a gas have different speed and hence different kinetic energy. The average kinetic energy of gas molecules is directly proportional to absolute temperature. [Only 2 postulates required] 		2	2		
5.		Hess's law states that the total enthalpy change for a physical or chemical process is the same whether the reaction taking place in a single step or in several steps.		2	2		
6.	(a)		$\overline{\left[H_{2}\right]^{3}}$			1	2
	(b)	$Kc = [H_2]$				1	
7.		Solution which	resists the change in pH on dilution of acid or alkali is called Buffer solution		n of	1	2
		E.g. A mixture o NH₄Cl etc.	f acetic acid and sodium acetate, a r (Only one example is required		and	1	2

8.	(i)	Sodium hydrogencarbonate or Sodium bicarbonate [NaHCO ₃]	1	
	(ii)	Soda ash OR, Anhydrous Sodium Carbonate OR, Na₂CO₃]		2
9.	(,	CH ₃ -CH ₂ -CH ₂ -OH [Propan-1-ol OR, n-propyl alcohol] and		
		CH ₃ –CH –CH ₃ [Propan-2-ol OR, Isopropyl alcohol]		2
		ОН	1	
10.		Complete structural formula of 2-Methyl pentane is		
		р р р р р	1	
		H H H H H-C-C-C-C-H H H H H		
		· ·		2
		H–C– H		2
		Its condensed structural formula is:		
		CH ₃ -CH ₂ -CH ₂ -CH-CH ₃ OR, CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₃	1	
		CH₃		
11.	(a)	A is C ₆ H ₆ OR, Benzene OR,	1	
			1	2
			1	_
42	(b)	B is CH ₃ -CH ₃ OR, Ethane		
12.		Geometrical isomers of But-2-ene are cis-but-2-ene and trans-but-2-ene.		
		CH_3 CH_3 H		
		CH_3 CH_3 CH_3 H CH_3 H CH_3	2	2
		н н н сн		
		cis-But-2-ene trans-But-2-ene		
		Answer any 8 questions from 13 to 28. Each carries 3 scores. (8 x 3 =	<u>24)</u>	
13.	(i)	Avogadro number is 6.022x10 ²³	1	
	(ii)	No. of moles (n) = Given mass in gram (w)	1	
	(")	Molar mass (M)	3	
		= 180/18 = 10 moles	1	
14.	(i)	Molarity is defined as the no. of moles of solute dissolved per litre of the		
		solution.	1	
		Or, Molarity = No. of moles of solute	_	
	/…	Volume of solution in litre		3
	(ii)	It states that if two elements can combine to form more than one	2	
		compounds, the different masses of one of the elements that combine with a fixed mass of the other element, are in small whole number ratio.	2	
15.	(a)	This is due to the increase in no. of shells and shielding effect.	1	
13.		In fluorine, the incoming electron is added to the 2 nd shell, while in	1	
	(b)	chlorine, it is added to the 3 rd shell. Because of the smaller size of the		3
		second shell, the electronic repulsion is greater in F. So it does not easily	2	
		add electrons and hence its electron gain enthalpy is less negative.		
16	(i)	s block, p block, d block and f block elements.	1	
	(ii)	· · · · · · · · · · · · · · · · · · ·		3
		their atomic numbers.	۷	

17.	(i)	Bond order is defined as one half of the difference between the number		
17.	(1)			
		of electrons in the bonding and the anti-bonding orbitals.		3
	/…	OR, Bond order (B.O) = $\frac{1}{2}$ [N _b -N _a]		
	(ii)	The bond order of He ₂ molecule is zero. So it does not exist.	2	
18.	(i)	1	1	
	(ii)	Here $P_1 = 760 \text{ mm}$ of Hg, $V_1 = 600 \text{ mL}$, $T_1 = 25 + 273 = 298 \text{ K}$, $P_2 = ?$, $T_2 =$		
		20 + 273 = 293 K, V ₂ = 660 mL		
		From combined gas law equation, $P_1V_1 = P_2V_2$	1	
		$\overline{T_1}$ $\overline{T_2}$	1	3
		$760 \times 600 = P_2 \times 660$	_	
		298 293	1	
		P ₂ = 760 x 600 x 293		
		298 x 660 = 679.32 mm of Hg		
19.	(i)	(a) Boyle's law		
	, ,	(b) It states that at constant temperature, the volume of a fixed mass of	1	
		gas is inversely proportional to its pressure.		
		Or, V α 1/p (at constant temperature and no. of moles)	1	3
		Or, pV = a constant (at constant temperature and no. of moles)		
	(ii)	The ideal gas equation is PV = nRT.	1	1
20.	(i)	Open system	1	
20.	(ii)	It states that energy can neither be created nor be destroyed.		-
	(11)	Or, the total energy in the universe is always a constant.		3
		Or, the total energy of an isolated system is always a constant.	2)
		Or, the mathematical equation $\Delta U = q + w$		
21.	/;\	· · · · · · · · · · · · · · · · · · ·		
21.	(i)	Extensive properties are properties which depend on the amount of	1	
	/::\	matter present in the system.		3
	(ii)	Mass, volume	2	
22.	(i)	0	1	
	(ii)	+1 -2 +1 -2 0 +4 -2		
		$2 Cu2O + Cu2S \longrightarrow 4 Cu + SO2$		_
		Here the oxidation number of Cu decreases and that of sulphur		3
		increases. So Cu is reduced and S is oxidised.	1	
		Oxidising agent: Cu in both Cu ₂ O and Cu ₂ S [Or, Cu]	1	
		Reducing agent: S in Cu ₂ S [Or, S]	_	
23.	(i)	(a) Mn(II)O	1/2	
		(b) Fe(II)O	1/2]
	(ii)	Oxidation is the process of increase in the oxidation number of an		3
		element and reduction is the process of decrease in the oxidation	2	
		number of an element.		
24.	(i)	(A) CO + H ₂	1	
	(ii)	Hard water does not form lather with soap. While soft water forms]
		lather with soap easily.	1	2
	(iii)	In presence of light, H ₂ O ₂ decomposes slowly as follows:		3
	` ′	$2H_2O_2(I) \rightarrow 2H_2O(I) + O_2(g)$	1	
		So it is stored in wax-lined glass or plastic vessels in dark.		
	l .	<u> </u>	L	1

25.	(i)	These are hydrides formed by p-block elements. They are also known as			
	(ii)	covalent hydrides. E.g. CH ₄ , NH ₃ , H ₂ O and HF Electron deficient hydride: B ₂ H ₆			3
	(11)	Electron precise hydride: CH ₄			3
		Electron rich hydrides: NH ₃ , HF		2	
26.	(i)	K/Rb/Cs			
	(ii)				
	(11)	Li is the least reactive but the strongest reducing agent among all			
		the alkali metals.	trongest readeing agent among an		
		3. It forms only monoxide with oxygen.			
		4. LiCl is deliquescent and crystallizes as a hydrate (LiCl.2H ₂ O). But the			3
		other alkali metal chlorides do	not form hydrates.		
			[Any 2 required]		
27.	(i)	I. Lime stone	a. Calcium Carbonate		
		II. Slaked lime	b. Calcium Hydroxide	½ x 4 =	
		III. Plaster of Paris	c. Calcium Sulphate ½ H₂O	2	3
		IV. Quick lime	d. Calcium Oxide		J
	(ii)		slow down the process of setting of	1	
		the cement, so that it gets sufficien	tly hardened.		
28.	(i)	(a) 2-Methylpentan-3-ol		1	
	/::\	(b) 4-Oxopentanoic acid		1	3
	(ii)	-NH ₂ , -Cl		1	
			to 40. Each carries 4 scores. (6 x 4 = 2	<mark>4)</mark>	
29.	(i)	It states that "it is impossible to det	• •		
		position and momentum (or velocity) of a moving microscopic particle like electron".			
		Or, the mathematical equation, Δx . $\Delta p \geq h$			4
		$\frac{1}{4\pi}$			4
	(ii)	Lyman series, Balmer series, Paschen series, Brackett series and Pfund			
	(**)	series. [Any 4 required]		2	
30.	(i)	The important conclusions obtained by Rutherford from his Alpha ray			
		scattering Experiment are:			
		1. Since most of the α -particles pa	assed through the foil without any		
		deviation, most space in the ato	• •		
		2. A few positively charged α – particles were deflected. This is because			
		the positive charge of the atom is concentrated in a very small			
		volume at the centre called nuc			4
		3. The volume occupied by the nucleus is negligibly small as compared			
		to the total volume of the atom. The radius of the atom is about 10^{-10} m, while that of nucleus is 10^{-15} m.			
		[Any 2 required]			
	(ii)	Demerits of Rutherford atom model are:			
		1. It cannot explain the stability of the atom.			
	i	2. He cannot explain the electronic structure of atom.			

31.	/:\			
21.	(i)	The important postulates of this theory are:		
		1) The shape of the molecule depends on the number of valence shell		
		electron pairs (VSEPRs) around the central atom.		
		2) The valence shell electron pairs repel each other.		
		3) In order to reduce the repulsion, the electron pairs stay at maximum		
		distance.		
		4) Presence of lone pairs of electron causes distortion in the expected	2	
		geometry of the molecule.		
		5) The repulsion between two lone pairs of electrons is different from		
		those between two bond pairs or between a lone pair and bond pair.		4
		The repulsion decreases in the order lone pair - lone pair > lone pair -		
		bond pair > bond pair - bond pair.		
		6) As the angle between the electron pairs increases, the repulsion		
		decreases. [Any 2 required]		
	(ii)	Intermolecular hydrogen bond and intramolecular hydrogen bond.		
		E.g. for molecule that shows intermolecular hydrogen bond is HF or NH ₃	_	
		or H ₂ O or alcohol (R-OH)	2	
		E.g. for molecule that shows intramolecular hydrogen bond is o-		
	/*>	nitrophenol.		
32.	(i)	(C) sp ³	1	
	(ii)	The important characteristics of hybridisation are:		
		 The number of hybrid orbitals formed is equal to the number of 		
		atomic orbitals undergo hybridization.		
		The hybrid orbitals are always equivalent in energy and in		
		identical shape.	1	
		3. The hybrid orbitals are more effective in forming stable bonds	_	
		than the pure atomic orbitals.		4
		4. The hybrid orbitals are directed to some fixed positions in space.		
		So the type of hybridization gives the shape of the molecule.		
		[Any 2 required]		
	(iii)	M.O configuration is = $\sigma 1s^2 \ \sigma^* 1s^2 \ \sigma 2s^2 \ \sigma^* 2s^2 \ \sigma 2p_z^2 \ \pi 2p_x^2 \ \pi 2p_y^2 \ \pi^* 2p_x^1$		
		$\pi^*2p_y^{-1}$.		
		Due to the presence of unpaired electrons, O ₂ molecule is paramagnetic.	2	
		OR, the Molecular orbital diagram of O ₂ molecule with unpaired		
22	1.1	electrons.		
33.	(i)	Here the number of moles of reactants and products are same. So	2	
	/::/	pressure has no effect in this reaction.		
	(ii)	Le Chatlier's principle.	1	4
		It states that whenever there is a change in concentration, pressure or	4	
		temperature of a system at equilibrium, the system will try to readjust in	1	
2.4	/:\	such a way so as to cancel the effect of that change.		
34.	(i)	According to Arrhenius concept acids are substances which give		
		hydrogen ion (H ⁺) or hydronium ion (H ₃ O ⁺) in aqueous solution and bases	2	
		are substances which give hydroxyl ion (OH ⁻) in aqueous solution.	2	4
		E.g. for acids: HCl, HNO ₃ , H ₂ SO ₄ etc.		
	<u> </u>	E.g. for bases: NaOH, KOH, NH₄OH etc.		

	(ii)	(a) H ₂ O:- Conjugate acid: H ₃ O ⁺ , Conjugate base: OH [−]			
		(b) NH ₃ :- Conjugate acid: NH ₄ ⁺ , Conjugate base: NH ₂ ⁻			
35.	(i)	Diborane is the simplest boron hydride with molecular formula B ₂ H ₆ .		1	
	(ii)	2 centre – 2 electron bonds and 3 centre – 2 electron bonds (banana			_
		bonds) OR, B-H bonds and B–H–B b	onds	1	4
	(iii)	Glass and cement			
36.	(i)	CO forms a highly stable complex w	rith haemoglobin (carboxy		
		haemoglobin). This decreases the o	xygen carrying capacity of blood,	2	
		which will result in headache, weak eyesight, nervousness and even			4
		death. So CO is highly poisonous.			
	(ii)	Diamond, Graphite, Fullerene (Any		2	
37.	(i)	Nitrogen (N), Sulphur (S), Chlorine (2	
			(Any 2 required)	_	
	(ii)	Homolysis	Heterolysis		
		It is a type of bond fission in	Here the bond breaks in such a		
		which each of the bonded atoms	manner that the shared pair of		
		gets one of the electrons of the	electrons remains with one of the		4
		shared pair.	parts.	2	
		Here the movement of a single	Here the movement of a pair of		
		electron takes place.	electron takes place.		
		As a result of homolysis free radicals are formed.	As a result of heterolysis, positive		
		radicals are formed.	and negative ions are formed.		
38.		(Any 2 required)			
50.		(a) A is CH ₃ -CHBr-CH ₃ (2-Bromopropane) and B is CH ₃ -CH ₂ -CH ₂ Br (1-Bromopropane).			
		(b) The major product is CH ₃ -CHBr-CH ₃ (2-Bromopropane).			
		(c) It is decided according to Markownikoff's rule.			4
		The rule states that when an unsym	2		
		unsymmetrical alkene, the negative part of the reagent gets attached to			
		the carbon containing lesser number of hydrogen atoms.			
39.	(i)	НН	H		
		H. H.			
		(\			
		H 보기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	2		
		H, O, HL	H H		4
		Eclipsed conformation S	H taggered conformation		_
	(ii)	Staggered conformation is stabler the			
	(11)	repulsive forces between the electr	•	2	
40.	(i)	Green house gases are CO ₂ , methar			
10.	('')		• •	2	
	(ii)	chlorofluorocarbons (CFC's), nitrous oxide and ozone. [Any 2 required] The harmful effects of acid rain are:			
	(,	 Acid rain is harmful for agriculture 			
		_	nd skin cancer in human beings and	2	
		animals.	.a s.a.r cancer ar namun beings and		4
		allillais.			-

*	It affects plants and animal life in aquatic ecosystem.
*	It corrodes water pipes resulting in the dissolution of heavy metals
	into the drinking water.

 Acid rain damages buildings and other structures made of stone or metal. [Any 2 required]

