Physical World

Classical physics deals with macroscopic domain (everyday and laboratory) egs: Mechanics, Optics, Thermodynamics

Microscopic domain includes atomic, molecular and nuclear phenomena

Units and Measurement

SI Units

Fundamental Units

Mass - kilogram (kg)	Electric Current - ampere (A)	Supplementary Units
Length --- metre (m)	Temperature - kelvin (K)	
Time ----- seconds (s)	Amount of Substance - mole (mol)	Angle - radian (rad)
	Luminous Intensity - candela (cd)	Solid Angle - steradian (sr)

Derived Units

$$
\begin{aligned}
& \text { Velocity }=\frac{\text { Displacement }}{\text { Time }} \quad \mathbf{m} / \mathbf{s} \text { or } \mathbf{~ m s}^{-1} \\
& \qquad \text { Speed }=\frac{\text { Total path length }}{\text { Time interval }} \quad \mathbf{m} / \mathbf{s} \text { or } \mathbf{~ m}^{-1} \\
& \text { Acceleration }=\frac{\text { Change in velocity }}{\text { Time }} \quad \mathbf{m} / \mathbf{s}^{2} \text { or } \mathbf{m s}^{-2}
\end{aligned}
$$

Acceleration due to gravity $\quad \mathbf{m} / \mathbf{s}^{2}$ or $\mathbf{m s}^{-2}$

$$
\text { Momentum }=\text { mass } \mathrm{x} \text { velocity } \quad \text { kgms }^{-1}
$$

$$
\text { Force }=\frac{\text { Change in momentum }}{\text { Time }}=m a \quad \mathbf{k g m s}^{-2} \text { or newton }(\mathbf{N})
$$

Energy or Work $=$ Force x displacement $\mathbf{k g m}^{2} \mathbf{s}^{-2}$ or newton (Nm) or joule (J)

Dimensions

Fundamental Quantities

```
Mass - [M]
    Length ---- [L]
            Time
                ----- [T\}
```

Derived Units

$$
\begin{array}{r}
\text { Velocity }=\frac{\text { Displacement }}{\text { Time }} \quad \mathbf{L T}^{-1} \\
\text { Speed }=\frac{\text { Total path length }}{\text { Time interval }} \quad \mathbf{L T}^{-1}
\end{array}
$$

$$
\text { Acceleration }=\frac{\text { Change in velocity }}{\text { Time }} \quad \mathbf{L T}^{-2}
$$

Acceleration due to gravity $\mathbf{L T}^{-2}$

$$
\begin{array}{r}
\text { Momentum }=\text { mass } \times \text { velocity } \quad \mathbf{M L T}^{-1} \\
\text { Force }=\frac{\text { Change in momentum }}{\text { Time }}=m a \quad \mathbf{M L T}^{-2}
\end{array}
$$

$$
\text { Energy or Work = Force } \mathrm{x} \text { displacement } \mathbf{M L}^{2} \mathbf{T}^{-2}
$$

Homogeneity Principle

The dimensions of the each term on both sides of an equation must be same
Q. Check the dimensional consistancy (Check the correctness) of an equation $\mathbf{F}=\mathbf{m a}$

$$
\begin{aligned}
{[\mathrm{F}]=} & \mathbf{M L T}^{-2} \\
{[\mathrm{ma}]=} & \mathbf{M} \mathbf{x} \mathbf{L T}^{-2}=\mathbf{M L T}^{-2} \\
& \text { According to homogeneity principle equation } \mathbf{F}=\mathbf{m a} \text { is correct }
\end{aligned}
$$

Limitations of Dimensional Analysis

1. Dimensionless constants (trigonometric) can't be obtained
2. It checks only dimensional correctness not exact correctness

Motion in a Straight line

Path Length (Distance Travelled)

The total length of the path travelled by an object is called Path Length. It is a scalar quantity. It is always positive.

Displacement

Dispalcement is the change in position of the object.
It is a vector quantity. It can be positive, zero and negative values
Distance (path length) is always greater or equal to displacement.
For a straight line motion, diatance and displacement are equal.

$$
\begin{aligned}
& \text { Average speed }=\frac{\text { Total pathlength }}{\text { Time interval }} \\
& \text { Average Velocity }=\frac{\text { Displacement }}{\text { Time interval }}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \\
& \text { Instantaneous velocity }=\text { velocity }=\frac{\lim }{\Delta t \rightarrow 0} \quad \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
\end{aligned}
$$

Velocity is the time rate of change of the displacement

Velocity - time relation

```
acceleration \(a=\frac{\text { change in velocity }}{\text { time }}=\frac{v-u}{t}\)
    cross multiplying at \(=\mathbf{v}-\mathbf{u}\)
    or \(\mathbf{v}=\mathbf{u}+\) at
```


Displacement - time relation

Displacement = average velocity x time

$$
\begin{aligned}
& s=\frac{u+v}{2} t \\
& \quad \text { using } \mathbf{v}=\mathbf{u}+\mathbf{a t} \\
& \qquad s=\frac{u+u+a t}{2} t=\frac{2 u t}{2}+\frac{a t^{2}}{2}=u t+\frac{1}{2} a t^{2}
\end{aligned}
$$

Velocity - displacement relation
we have
$a=\frac{v-u}{t}$ and $s=\frac{u+v}{2} t$
multiplying as $=\frac{v-u}{t} \frac{u+v}{2} t=\frac{v^{2}-u^{2}}{2}$
cross multiplying 2 as $=v^{2}-u^{2}$ or $v^{2}=u^{2}+2$ as
Area under velocity - time graph gives displacement
Slope of velocity - time graph gives acceleration

Motion in a Plane

A scalar quantity has only magnitude and no direction
It can have zero or positive values
Eg. distance, speed, mass , temperature, time, work, power
A vector quantity has both magnitude and direction
It can have negative, zero or positive values
Eg.displacement, velocity, acceleration, force, momentum, torque

Projectile Motion

A body projected in air and moves under the influence of gravity alone is called projectile
It is a two dimensional motion
Vertical motion is non-uniform motion, horizontal motion is uniform motion

Vertical and horizontal motions are completely
 independent

Maximum height (H)

(draw above fig)
Consider vertical motion of the projectile
Final velocity $\mathbf{v}=\mathbf{0}$ at maximum height and

$$
a=-g
$$

initial velocity u--> $u \sin \theta$

$$
\text { and } \mathrm{s}=\mathrm{H}=\text { ? }
$$

then the equation $v^{2}=u^{2}+2$ as becomes

$$
0=(u \sin \theta)^{2}-2 g H \text { or } \quad H=\frac{u^{2} \sin ^{2} \theta}{2 g}
$$

Time of Flight (T)

(draw above fig)
Consider vertical motion of the projectile

$$
\mathrm{a}=-\mathrm{g}, \quad \mathrm{~s}=0 \text { (no vertical displacement) }
$$

initial velocity u--> $u \sin \theta \quad t=T=$?
then the equation $s=u t+\frac{1}{2} a t^{2}$ becomes

$$
\begin{aligned}
& 0=u \sin \theta T-\frac{1}{2} g T^{2} \\
& \text { or } T=\frac{2 u \sin \theta}{g}
\end{aligned}
$$

Horizontal Range (R)

(draw above fig)
Consider horizontal motion of the projectile (it is a uniform motion)

Displacement $=$ velocity \times Time

$$
\begin{aligned}
& \text { velocity }=u \cos \theta \\
& \text { Time }=\frac{2 u \sin \theta}{g} \\
& \text { Displacement } R=u \cos \theta \frac{2 u \sin \theta}{g}=\frac{u^{2} 2 \sin \theta \cos \theta}{g}=\frac{u^{2}}{g} \sin 2 \theta \\
& \quad R=\frac{u^{2}}{g} \sin 2 \theta
\end{aligned}
$$

Maximum range $\mathbf{R}_{\text {max }}$

Range is maximum at $\boldsymbol{\operatorname { s i n }} \mathbf{2 \theta}=\mathbf{1}$ (maximum value)
ie $\mathbf{2 \theta}=\mathbf{9 0} \quad$ 0r $\quad \theta=45$ degree

$$
R_{\max }=\frac{u^{2}}{g}
$$

Trajectory is a Parabola

Path of the projectile is called trajectory and it is a parabola, since its equation is in the form of

$$
y=a x+b x^{2}
$$

Laws of Motion

Momentum

$$
\mathbf{p}=\mathbf{m} \mathbf{v}
$$

Momentum is a vector quantity.
Unit $=\mathrm{kgm} / \mathrm{s}$
Dimensions $[\mathrm{p}]=\mathrm{ML} \mathrm{T}^{-1}$

Newton's Second Law's of Motion

Rate of change of momentum with respect to time is directional proportional to applied force

$$
F=\frac{d p}{d t}
$$

Proof of $\mathbf{F}=\mathbf{m a}$
According to Newto's second law $\quad F=\frac{d p}{d t}$
But momentum $\mathrm{p}=\mathrm{mv}$

$$
F=d \frac{(m v)}{d t}=m \frac{d v}{d t}=m a \text { since } \frac{d v}{d t}=a \text { is the acceleration }
$$

Law of Conservation of Momentum

The total momentum of an isolated system of interacting particles is conserved.
Or
Ttotal momentum of a system of particles remains constant if there is no external force is acting

Proof

According to second law $F=\frac{d p}{d t}$
For an isolated system $\mathrm{F}=0$

$$
\frac{d p}{d t}=0 \quad \text { or } \mathbf{d p}=\mathbf{0}
$$

That means $\mathbf{P}=$ a constant
Friction - Friction is a necessary evil
Static friction
It opposes impending relative motion between two surfaces in contact
It is independent of the area of contact
The limiting value of static friction (fs) max , varies with the normal force (N)
$(\mathrm{fs})_{\text {max }}=\mu_{\mathrm{s}} \mathrm{N}$
μ_{s} is the coefficient of static friction

Kinetic friction

It opposes relative motion between surfaces in contact
Kinetic friction is independent of the area of contact.
Kinetic friction is nearly independent of the velocity.
Kinetic friction, fk varies with the normal force(N) , $\mathbf{f}_{\mathrm{k}}=\boldsymbol{\mu}_{\mathrm{k}} \mathbf{N}$
μ_{k} is the coefficient of kinetic friction

Disadvantages of friction

Friction causes energy loss (Heat ao Sound)
It produces wear and tear

Advantages of friction

Friction helps to walk or move a car
Breaks are applied due to Friction
Friction provides centripetal force for circular motion

Methods to reduce friction

(1) Lubricants are a way of reducing kinetic friction in a machine.
(2) Another way is to use ball bearings between two moving parts of a machine.

Work, Energy and Power

WORK

Work is said to be done, if an object is displaced (d) on the application of Force (F).

F Cos才 is the effective Force in the direction of displacement
Work $\mathbf{W}=(\mathrm{F} \cos \theta) \mathrm{d}=\mathrm{F} \mathrm{d} \operatorname{Cos} \theta=\mathbf{F} . \mathbf{d}$

So Work is a Scalar Quantity

It's unit is Joule (J) or $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$
It's dimensional formula is [$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
Work can be positive, zero or negative (even it is a scalar).

Energy

Energy is the capacity to do work
Energy is a Scalar Quantity
It's unit is Joule (J) or $\mathrm{kgm}^{2} \mathrm{~s}^{-2}$
It's dimensional formula is [$\mathrm{ML}^{2} \mathrm{~T}^{-2}$]
(Same as that of work)

Kinetic Energy

It is the energy possessed by a moving body

$$
\mathrm{KE}=1 / 2 \mathrm{mv}^{2}
$$

Potential Energy
Gravitational PE = mgh \quad It is due to it's position (height $=\mathrm{h}$)
Elastic PE, due to state of strain Eg: Energy stored in a stretched spring

Conservative Force

If force is conservative, work done is independent of the path
Work done depends only upon initial and final positions of the body
Eg: Work done by Gravity, EM force, Nuclear force, etc
Example of Non-conservative force: Friction, Viscous force, etc

Conservation of Mechanical Energy for a Freely Falling Body

At position A
$K E=0$
$\mathrm{PE}=\mathrm{mgh}$
$\mathrm{TE}=\mathrm{KE}+\mathrm{PE}=0+\mathrm{mgh}=\mathbf{m g h}$
At position B
$K E=m g x$
$\mathrm{PE}=\mathrm{mg}(\mathrm{h}-\mathrm{x})$
$\mathrm{TE}=\mathrm{KE}+\mathrm{PE}=\mathrm{mgx}+\mathrm{mg}(\mathrm{h}-\mathrm{x})=\mathbf{m g h}$
At position C
$\mathrm{KE}=\mathrm{mgh}$
$\mathrm{PE}=0$
$\mathrm{TE}=\mathrm{KE}+\mathrm{PE}=\mathbf{m g h}+0=\mathbf{m g h}$
At any point, Total Energy remains constant.
So total mechanical energy is conserved during the free fall.

Power

Power is the rate of doing Work

$$
\begin{aligned}
& \text { Power }=\frac{\text { Work }}{\text { Time }} \text { 0r Average Power }=\frac{W}{t} \\
& \text { Instantaneous Power }=\frac{d W}{d t} \text { or Instantaneous Power }=\vec{F} \cdot \vec{v}
\end{aligned}
$$

Power is a Scalar Quantity
It's unit is Watt (W) or Js^{-1}

$$
\text { It's dimensional formula is [} \mathrm{ML}^{2} \mathrm{~T}^{-3} \text {] }
$$

Another unit of power is the horse-power (hp)
$1 \mathrm{hp}=746 \mathrm{~W}$
Commercial unit of power is kilowatt hour (kWh)
$1 \mathrm{kWh}=3.6 \times \mathbf{1 0}^{\mathbf{6}} \mathrm{J}$

Theorems of Perpendicular and Parallel Axes

Perpendicular Axes Theorem

$\mathbf{I}_{\mathbf{z}}=\mathbf{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}$
The moment of inertia of a plane lamina about z axis is equal to the sum of its moments of inertia about x -axis and y -axis, if the lamina lies in xy plane

Parallel Axes Theorem

$\mathbf{I}_{z^{\prime}}=\mathbf{I}_{z}+\mathbf{M a}^{2}$
The moment of inertia of a body about any axis is equal to the sum of the moment of inertia of the body about a parallel axis passing through its centre of mass and the product of its mass and the square of the distance between the two parallel axes.

Gravitation

Acceleration due to gravity of the Earth (g)

The acceleration gained by a body due to the gravitational force of earth is called acceleration due to gravity.
Expression for g
We know Gravitational force between Earth (mass M) and the body (mass m)

$$
|F|=G \frac{M m}{R^{2}} \text { and } \mathbf{F}=\mathbf{m g}
$$

Where R is the radius of Earth (size of the body is very small)
$g=\frac{G M}{R^{2}}$ is the acceleration due to gravity at the surface of the Earth ($\mathrm{g}=9.8 \mathrm{~ms}^{-2}$)
Acceleration due to gravity at a height (h) above the surface of the earth
Acceleration due to gravity decreases with altitude (height)

$$
g(h)=\frac{G M}{(R+h)^{2}} \quad \text { and } \quad g(h)=g\left(1-\frac{2 h}{R}\right)
$$

Acceleration due to gravity at a depth d below the surface of the earth
Acceleration due to gravity decreases with depth

$$
\text { as } g(d)=g\left(1-\frac{d}{R}\right)
$$

Acceleration due to gravity is
 maximum at the surface of the Earth

Mechanical Properties of Solids

Hooke's Law

For small deformations the stress is directly proportional to strain. This is known as Hooke's law.
Stress \propto Strain

$$
\frac{\text { Stress }}{\text { Strain }}=\text { a constant }=\text { Modulus of Elasticity }
$$

The SI unit of modulus of elasticity is $\mathrm{N} \mathrm{m}^{-2}$ or pascal (Pa)
Dimensional formula is [$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$]
(same as that of stress,since strain is unitless)

Stress-Strain Curve

In the region from O to A

Hooke's law is obeyed (linear part of the curve)
In the region from A to B
The point B in the curve is known as yield point or elastic limit

In the region from B to D

The point D on the graph is the ultimate tensile strength (S
u) of the material

In the region from D to E

Beyond this point D , additional strain is produced even by a reduced applied force and fracture occurs at point E.
The point E is called Fracture Point.

Mechanical Properties of Fluids

Pascal's law

Whenever external pressure is applied on any part of a fluid contained in a vessel, it is transmitted undiminished and equally in all directions.

Hydraulic lift

$$
P_{1}=\frac{F_{1}}{A_{1}} \quad \text { and } \quad P_{2}=\frac{F_{2}}{A_{2}}
$$

According to Pascal's law $\mathbf{P}_{\mathbf{1}}=\mathbf{P}_{2}$

$$
\begin{aligned}
& \frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \text { or } \\
& F_{2}=F_{1} \frac{A_{2}}{A_{1}} \text { Since } \mathbf{A}_{2} \gg \mathbf{A}_{1}, \mathbf{F}_{2} \gg \mathbf{F}_{\mathbf{1}}
\end{aligned}
$$

Bernoulli's Principle

It is a consequence of Conservation of Energy
It is applied to non viscous, incompressible fluid motion in steady state
Pressure Energy + Kinetic Energy + Potential Energy = a constant

Proof: $\quad \Delta W=\Delta K E+\Delta P E$

For any two points

$$
\left(P_{1}-P_{2}\right) \Delta V=\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)+m g\left(h_{2}-h_{1}\right)
$$

For unit unit volume of a fluid with density

$$
\rho=\frac{m}{\Delta V}
$$

Dividing throughout by $\Delta \mathbf{V}$

$$
\begin{aligned}
& P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2} \quad \text { That is } \quad P+\frac{1}{2} \rho v^{2}+\rho g h=a \text { constant } \\
& P-\text { Pressure head } \\
& 1 / 2 \rho v^{2}-\text { Velocity head } \\
& \quad \rho g g \text { - Position head }
\end{aligned}
$$

Thermal Properties of Matter

Thermal Expansion

The increase in the dimensions of a body due to the increase in its temperature is called thermal expansion.
Three types of thermal expansions are
1.Coefficient of Linear expansion

$$
\alpha_{L}=\frac{\Delta L}{L \Delta T}
$$

2. Coefficient of area expansion

$$
\alpha_{A}=\frac{\Delta A}{A \Delta T}
$$

3. Coefficient of volume expansion

$$
\alpha_{V}=\frac{\Delta V}{V \Delta T}
$$

Relation between $\boldsymbol{\alpha}_{\mathrm{L}}$ and $\boldsymbol{\alpha}_{\mathrm{A}}$

$$
\alpha_{A}=2 \alpha_{L}
$$

Relation between $\boldsymbol{\alpha}_{\mathrm{L}}$ and $\boldsymbol{\alpha}_{\mathrm{V}}$

$$
\boldsymbol{\alpha}_{\mathrm{V}}=3 \boldsymbol{\alpha}_{\mathrm{L}}
$$

Thermal Expansion of Water(Or) Anomalous Behavour of Water

Water contracts on heating from $0^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$. That is water has minimum volume and hence maximum density at $4^{\circ} \mathrm{C}$. When water is heated after $4^{\circ} \mathrm{C}$, it expands like other liquids.

Thermodynamics

First law of Thermodynamics

The heat supplied to the system is partly used to increase the internal energy of the system and the rest is used to do work on the environment . $\Delta \mathbf{Q}=\Delta \mathbf{U}+\Delta \mathbf{W}$

Thermodynamic Processes

Isothermal process - at constant temperature $\mathbf{P V}=$ constant
Isobaric process - at constant pressure
Isochoric process - at constant volume
Adiabatic process - No heat flow between the system and the surroundings
$\mathbf{P V}^{\mathbf{V}}=$ constant

Heat Engine

Processes in Carnot's cycle
Isothermal Expansion
Adiabatic Expansion
Isothermal Compression
Adiabatic Compression

Efficiencey of Heat Engine

$$
\eta=\frac{\text { Work }}{\text { Input Heat }}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}}=1-\frac{T_{2}}{T_{1}}
$$

Kinetic Theory

- A given amount of gas is a collection of a large number of molecules that are in random motion.
- At ordinary pressure and temperature, the average distance between molecules is very large compared to the size of a molecule ($2 \AA$).
- The interaction between the molecules is negligible.
- The molecules make elastic collisions with each other and also with the walls of the container .
- As the collisions are elastic , total kinetic energy and total momentum are conserved.
- The average kinetic energy of a molecule is proportional to the absolute temperature of the gas
-

Oscillations

For SHM,
$F \alpha \mathbf{x} \quad$ or $F=-k x$
On solving we get $\omega=\sqrt{\frac{k}{m}}$ is the angular velocity

Period of Oscillations of a Simple Pendulum

We have F = -kx

$$
\text { or }-\mathbf{m g} \sin \theta=-\mathbf{k x}
$$

but from the figure $\sin \theta=x / l$

$$
m g \frac{x}{l}=k x
$$

$$
\begin{aligned}
\omega^{2}=\frac{k}{m}=\frac{g}{l} \quad \text { or } \quad \omega & =\sqrt{\frac{g}{l}} \\
\omega=2 \pi v & =\sqrt{\frac{g}{l}}
\end{aligned}
$$

or freguency $\quad v=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}$ and period $\quad T=\frac{1}{v}=2 \pi \sqrt{\frac{l}{g}}$

Waves

Consider a wave propagating in positive \mathbf{x} direction with initial phase $\varphi=0$

$$
y(x, t)=a \sin (k x-\omega t)
$$

Consider a wave propagating in negative \mathbf{x} direction with initial phase $\varphi=0$

$$
y(x, t)=a \sin (k x+\omega t)
$$

Speed of a Transverse Wave on Stretched String $\quad v=\sqrt{\frac{T}{\mu}}$

$$
\mu \text { - the linear mass density and } T \text { - the tension }
$$

The speed of propagation of a longitudinal wave in a fluid $\quad v=\sqrt{\frac{B}{\rho}}$

$$
\begin{aligned}
& B=\text { the bulk modulus of medium } \\
& \rho=\text { the density of the medium }
\end{aligned}
$$

