Reg. No. : \qquad
Name: \qquad

FIRST YEAR HIGHER SECONDARY EXAMINATION, SEPTEMBER 2021

Part - III
 MATHEMATICS (COMMERCE)
 Time : 2 Hours
 Maximum : 60 Scores
 Cool-off time : 20 Minutes

General Instructions to Candidates :

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

 உாையாி円ிळளை๐.

Questions 1 to 12 carry 3 scores each. Answer any six.

1. Expand $(1+x)^{4}$ using binomial theorem. Hence evaluate $(101)^{4}$.
2. The third term of a Geometric Progression (GP) is 4 and its sixth term is $\frac{1}{2}$
(i) Find the common ratio
(ii) Write the GP
3. (i) The maximum value of the function $\mathrm{f}(x)=\sin x$ is \qquad
(A) 1
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2}$
(D) 2
(ii) Prove that

$$
\begin{equation*}
(\sin x+\cos x)^{2}=1+\sin 2 x \tag{2}
\end{equation*}
$$

4. (i) If ${ }^{\mathrm{n}} \mathrm{C}_{9}={ }^{\mathrm{n}} \mathrm{C}_{8}$, then $\mathrm{n}=$ \qquad
(A) 9
(B) 17
(C) 1
(D) 8
(1)
(ii) How many chords can be drawn through 12 points on a circle?
5. If $x^{2}=16 \mathrm{y}$ is the equation of a parabola then find its
(i) focus
(2)
(ii) length of the latus rectum
6. Consider the expansion of $\left(\frac{x}{9}+9 y\right)^{2 n}$.
(i) The number of terms in the above expansion is \qquad .
(A) 2 n
(B) $\mathrm{n}+1$
(C) $2 \mathrm{n}+1$
(D) $2 \mathrm{n}-1$
(ii) What is its $(\mathrm{n}+1)^{\text {th }}$ term ?

 \qquad
（A） 1
（B）$\frac{\sqrt{3}}{2}$
（C）$\frac{1}{2}$
（D） 2
（ii）$(\sin x+\cos x)^{2}=1+\sin 2 x$ ค円

4．（i）${ }^{\mathrm{n}} \mathrm{C}_{9}={ }^{\mathrm{n}} \mathrm{C}_{8}$ 毋円ฒிळை $\mathrm{n}=$ \qquad
（A） 9
（B） 17
（C） 1
（D） 8
 வ๑๓๐๐๐？

（i）■ேロว๓๓กั

 \qquad

（A） $2 n$
（B） $\mathrm{n}+1$
（C） $2 \mathrm{n}+1$
（D） $2 \mathrm{n}-1$

7. (i) $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=$ \qquad
(A) 0
(B) 1
(C) -1
(D) does not exist
(ii) Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$.
8. (i) Write the negation of the statement.
"The sum of 3 and 4 is 9 "
(1)
(ii) Write the converse of the given statement.
"If a number n is even, then n^{2} is even."
9. (i) Represent the inequality $x>-3$ on a number line.
(ii) Solve the inequality

$$
\begin{equation*}
2(2 x+3)-10<6(x-2) \tag{2}
\end{equation*}
$$

10. (i) A point in the $7^{\text {th }}$ octant is \qquad .
(A) $(2,3,-5)$
(B) $(-4,-2,1)$
(C) $(-5,-4,-5)$
(D) $(2,-2,4)$
(ii) Determine a point on the x-axis which is equidistant from the points $(-2,3,5)$ and (1, 2,3).
11. Consider the following data $40,60,68,78,54$
(i) Find the median.
(ii) Find the mean deviation about the median.
12. (i) If $\mathrm{P}(\mathrm{A})=\frac{3}{5}$ and $\mathrm{P}(\mathrm{B})=\frac{1}{5}$ then find $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$ if A and B are mutually exclusive events.
(ii) A pair of dice is thrown then write the event of "getting an even number on the first die."
13. (i) $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=$ \qquad
(A) 0
(B) 1
(C) -1

"If a number n is even, then n^{2} is even."

 \qquad .
(A) $(2,3,-5)$
(B) $(-4,-2,1)$
(C) $(-5,-4,-5)$
(D) $(2,-2,4)$
(1)

$40,60,68,78,54$

Questions 13 to 24 carry 4 scores each. Answer any six.
13. Let $\mathrm{A}=\{x: x$ is a natural number less than 8$\}$
$\mathrm{B}=\{x: x$ is a prime number less than 8$\}$
(i) Write the sets A and B in the roster form.
(ii) Write $\mathrm{C}=\mathrm{A} \cup \mathrm{B}$.
(iii) Write a subset of C containing all even numbers in C .
14. (i) Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\}$ and

$$
\begin{equation*}
\mathrm{f}=\{(1,5),(2,9),(3,1),(4,5),(2,11)\} \tag{2}
\end{equation*}
$$

Is f a function from A to B . Why ?
(ii) Draw the graph of the function $\mathrm{f}(x)=|x|, x \in \mathrm{R}$.
15. Prove that
(i) $\sin \left(40^{\circ}+x\right) \cos \left(10^{\circ}+x\right)-\cos \left(40^{\circ}+x\right) \sin \left(10^{\circ}+x\right)=\frac{1}{2}$.
(ii) $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$.
16. Consider the statement
$\mathrm{P}(\mathrm{n}): 2+2^{2}+2^{3}+\ldots \ldots+2^{\mathrm{n}}=2\left(2^{\mathrm{n}}-1\right)$
Prove the statement by the principle of Mathematical induction.
17. (i) Express the complex number $(1+2 i)(1-i)$ in the form $a+i b$.
(ii) Write its additive inverse.
(iii) Find the value of $(i)^{4}$.
18. (i) The sum of the infinite series $1, \frac{1}{3}, \frac{1}{9} \ldots \ldots$ is \qquad -.
(A) $\frac{3}{2}$
(B) $\frac{5}{2}$
(C) $\frac{2}{3}$
(D) $\frac{7}{2}$
(ii) Find the sum to n terms of the series

$$
\begin{equation*}
3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{2}+\ldots \ldots \tag{3}
\end{equation*}
$$

FY-251

($6 \times 4=24$)

(ii) $\mathrm{C}=\mathrm{A} \cup \mathrm{B}$ ก๑ழுளூృ

14. (i) $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\}$
$\mathrm{f}=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$

15. ๑ைைியிகாூக.
(i) $\sin \left(40^{\circ}+x\right) \cos \left(10^{\circ}+x\right)-\cos \left(40^{\circ}+x\right) \sin \left(10^{\circ}+x\right)=\frac{1}{2}$.
(ii) $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$.

 ๑ைைியிமாூே.

 \qquad

(A) $\frac{3}{2}$
(B) $\frac{5}{2}$
(C) $\frac{2}{3}$
(D) $\frac{7}{2}$
(1)

19. (i) Write the slope of the line $x+y=4$.
(ii) Find the equation of a line which is perpendicular to $x+y=4$ and passing through the point $(2,4)$.
20. Consider the points $\mathrm{A}(2,1,3)$ and $\mathrm{B}(1,2,1)$.
(i) Find the ratio in which the join of AB is divided by YZ plane.
(ii) Also find the point of division.
21. (i) If $y=2 x^{3}-4 x^{2}+1$ then find $\frac{d y}{d x}$.
(ii) Find the derivative of $(x+1)(x+2)$ using product rule.
22. (i) Reduce the equation $6 x+3 y-5=0$ into the intercept form and find its x-intercept and y-intercept.
(ii) Write the point of intersection of the above line with the axes.
23. Verify by the method of contradiction " $\sqrt{2}$ is irrational".
24. A bag contains 9 balls of which 4 are red, 3 are blue and 2 are yellow. If a ball is drawn at random, what is the probability that it will be
(i) Red
(ii) Not yellow
(iii) Either red or blue

Questions 25 to 30 carry 6 scores each. Answer any three.
25. Let $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\}$
$A=\{1,2,3,4\}$ and $B=\{4,5,6,7\}$
(i) $\mathrm{A} \cap \mathrm{B}=$ \qquad
(A) $\{1,2,3,4\}$
(B) $\{6,7\}$
(C) $\{1,2\}$
(D) $\{4\}$
(1)
(ii) Find $\mathrm{A}-\mathrm{B}$ and A^{\prime}
(iii) Verify that $\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}$

FY-251

(i) دృయన్ூ

25. $\mathrm{U}=\{1,2,3,4,5,6,7,8,9\}$
$\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{4,5,6,7\}$ ๔ேேைை
(i) $\mathrm{A} \cap \mathrm{B}=$ \qquad
(A) $\{1,2,3,4\}$
(B) $\{6,7\}$
(C) $\{1,2\}$
(D) $\{4\}$
(ii) $\mathrm{A}-\mathrm{B}, \mathrm{A}^{\prime}$ றவ ه๐றమృ

FY-251
26. Let $\mathrm{A}=\{1,2,3,4,5,6\}$ be a set. Define a relation R from A to A by $\mathrm{R}=\{(x, \mathrm{y}) / \mathrm{y}=x+1\}$
(i) Express R in the roster form
(ii) Represent the relation R using an arrow diagram
(iii) Write the domain and range of R
27. (i) Which of the following sets of inequality represent the second quadrant?
(A) $x<0, y<0$
(B) $x>0, y>0$
(C) $x<0, y>0$
(D) $x>0, y<0$
(ii) Solve the following system of inequalities graphically

$$
\begin{align*}
& x-2 y \leq 4 \\
& 3 x+4 y \leq 12 \\
& x \geq 0 \tag{5}
\end{align*}
$$

28. (i) Find ' r ' if ${ }^{5} \mathrm{P}_{\mathrm{r}}={ }^{6} \mathrm{P}_{\mathrm{r}-1}$.
(ii) Find the number of words that can be formed from the letters of the word MALAYALAM.
(iii) How many of these arrangements starts with Y ?
29. Consider the equation of the ellipse $9 x^{2}+25 y^{2}=225$
(i) Express the equation in standard form
(ii) Find the co-ordinates of the foci and vertices
(iii) Find the eccentricity and the length of latus rectum.
30. For the frequency distribution

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	5	8	15	16	6

(i) Find the mean
(ii) Calculate the variance

$\mathrm{R}=\{(x, \mathrm{y}) / \mathrm{y}=x+1\}$

（A）$x<0, y<0$
（B）$x>0, y>0$
（C）$x<0, y>0$
（D）$x>0, y<0$
 வையு3．

$$
\begin{align*}
& x-2 y \leq 4 \\
& 3 x+4 y \leq 12 \\
& x \geq 0 \tag{5}
\end{align*}
$$

 உஸை๐๓๑๐．

がMW゙	0－10	10－20	20－30	30－40	40－50
（19வరెmை	5	8	15	16	6

