SECOND YEAR HIGHER SECONDARY SECOND TERMINAL EVALUATION 2019

PART III CHEMISTRY

KEY

SL.NO		SOLUTION	SCORE
1	c) Froth floatation		1
2	a) Liquid ammonia		1
3	+3		1
4	c) linkage isomerism		1
5	a) CCl ₂ F ₂		1
6	b)		
	O_2N NO_2 NO_2 NO_2		
7	b) Rosenmund Reduction		1
8	d) 68%		1
9	a) Milk		1
<u> </u>	Crystalline solids: quartz, NaCl		2
200	Amorphous solid: glass, rubber		-
11	Brownian movement		2
	In colloids, the particles of dispersion medium are in a state of continuous zig-zag motion. This motion was first observed by Robert Brown and it is known as Brownian movement. Peptization The process of conversion of a freshly prepared precipitate into a colloidal sol by shaking it with suitable dispersion medium in the presence of small amount of electrolyte is called partication		
12	peptization.		2
12	Ideal solution These are solutions which obey Raoult's law over the entire range of concentration. For such solutions, the enthalpy of mixing (Δ H mix) of the pure components is zero and also volume of mixing (Δ V mix) is zero. i.e. for an ideal solution, e.g solutions of n-hexane and n-heptane, bromoethane and chloroethane, benzene and toluene etc.		
13	A	В	2
	Magnetic separation	Haematite	
	Zone refining	Germanium	
	Mond's process	Ni(CO) ₄	
	Leaching	Bauxite	
14	a) Any one preparation method E.g: $S(s) + O_2(g) \rightarrow SO_2(g)$ $SO_3^{2-}(aq) + 2H^+(aq) \rightarrow H_2O(1) + SO_2(g)$ b) Moist sulphur dioxide behaves as a reducing agent. It converts Iron (III) ions to Iron (II) ions and decolourises acidified potassium permanganate (VII) solution (This used as a test for SO ₂). $2Fe^{3+} + SO_2 + 2H_2O \longrightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$ $5 SO_2 + 2MnO_4^- + 2H_2O \longrightarrow 5 SO_4^{2-} + 4H^+ + 2Mn^{2+}$		2

15	a) Nitric acid	1
	b) By using Ostwald process	1
16	 a) Paramagnetism arises from the presence of unpaired electrons. Each unpaired e- is associated with a spin magnetic moment and an orbital magnetic moment. For the compounds of 1st row transition elements, the contribution of orbital magnetic moment is effectively cancelled and so only spin magnetic moment is considered. It is determined by the no. of unpaired e-s and is calculated by the spin only formula: μs = √n(n+2) where n is the no. of unpaired electrons b) μs= √(5)(5+2) = 5.916 BM (n = no.of unpaired electrons = 5) 	2
17	Wurtz- fittig reaction C ₆ H ₅ -Cl + 2Na + CH ₃ -Cl ether C ₆ H ₅ -CH ₃ + 2NaCl	2
18	C ₂ H ₅ Cl is more reactive Because haloarenes are less reactive towards nucleophilic substitution reaction: (1) Resonance effect (2) Difference in hybridisation of carbon atom in C—X bond (3) Instability of phenyl cation (4) Repulsion between nucleophile and electron rich benzene ring (any two reasons)	2
19	HCHO + CH ₃ MgBr → CH ₃ -CH ₂ -OMgBr → CH ₃ -CH ₂ -OH+ Mg(OH)X (Any other method can be used)	2
20	Explanation with equation (dehydration of alcohol: symmetrical ether, williamson's ether synthesis: unsymmetrical ether)	
21	a) $CH_3-COOH + PCl_3/PCl_5/SOCl_2 \longrightarrow CH_3-COCl + (H_3PO_3/POCl_3/SO_2+HCl)$ b) $CH_3COOH + NH_3 \iff CH_3COONH_4 \xrightarrow{-+}_{-H_2O} CH_3CONH_2$ Ammonium acetate $\xrightarrow{-+}_{-H_2O} Acetamide$	2
22	Differences in structure/physical and chemical properties	2
23	 (1&2) Primary cells: These are cells which cannot be recharged or reused. Here the reaction occurs only once and after use over a period of time, they become dead E.g. Dry cell, mercury button cell etc. A secondary cell can be recharged and reused again and again. Here the cell reaction can be reversed by passing current through it in the opposite direction. The most important secondary cell is lead storage cell, which is used in automobiles and invertors. (3) primary cell(mercuric cell) 	
24	 a) Activation energy: According to Arrhenius, a chemical reaction occurs by the collision of reactant molecules. All the molecular collisions are not effective. For effective collision, the colliding molecules should have a minimum kinetic energy called activation energy. The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z). For a reaction A + B → Products Rate (r) = Z_{AB} e^{-Ea/RT} 	1 1 1
25	 a) Mond's process for Refining Nickel: In this process, nickel is heated in a stream of carbon monoxide forming a volatile complex, nickel tetracarbonyl: Ni + 4CO ^{330-350K}/₃₅₀ Ni(CO)₄ It is then decomposed to Ni and CO by heating at very high temperature. Ni(CO)₄ ^{450-470 K}/₄ Ni + 4CO van Arkel Method for Refining Zirconium or Titanium: Here the crude metal is heated in an evacuated vessel with iodine. The metal forms it volatile iodide. 	2

		r
	 Zr + 2I₂ → ZrI₄ The metal iodide is decomposed electrically by using a tungsten filament, electrically heated to about 1800K. The pure metal is thus deposited on the filament. ZrI₄ → Zr + 2I₂ b) In order to use this method, there are two requirements: The metal should form a volatile compound with an available reagent, The volatile compound should be easily decomposable, so that the recovery is easy. 	1
26	 a) When two different halogens react with each other, interhalogen compounds are formed. They can be assigned general compositions as AX, AX₃, AX₅ and AX₇ b) Any one example Cl₂ + F₂.437K, 2ClF l₂ + 3Cl₂ → 2lCl₃ (equal volume) (excess) Cl₂ + 3F₂.573K, 2ClF₃ Br₂ + 3F₂ → 2BrF₃ (excess) (diluted with water) l₂ + Cl₂ → 2lCl Br₂ + 5F₂ → 2BrF₅ (equimolar) (excess) c) The reactivity of inter halogen compound is higher when compared to halogen compounds since X-X¹ bond is highly reactive than X-X bond 	1 1 1
27	a) From chromite ore (FeCr ₂ O ₄). b) Structures $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{2^{-}} \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{2^{$	1
	Chromate ion Dichromate ion c) Any one example with equation Iodides to iodine $6 ^{-} \rightarrow 3 _2 + 6 e^{-}$ $\frac{Cr_2O_7^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_2O}{6I^{-} + Cr_2O_7^{2-} + 14H^{+} \rightarrow 3I_2 + 2Cr^{3+} + 7H_2O}$	1
28	 a) Potassium hexacyanido ferrate (II) b) Inner orbital complex c) In K₄[Fe(CN)₆] oxidation state of iron is +2 and in K₃[Fe(CN)₆] oxidation state is +3. Since both have strong field ligands pairing occur. In case of +2 oxidation state all electrons is paired such that configuration is t₂g⁶. But in case of +3 oxidation state configuration is t₂g⁵. Hence K₃[Fe(CN)₆] more stable because Fe³⁺ is smaller size and higher charge than that of Fe²⁺ 	1 1 1
29	 higher charge than that of Fe²⁺ a) Any two differences between SN¹ and SN² mechanism b) CH₃-Cl c) (primary haloalkanes are more reactive in SN² mechanism, due to steric hindrance of alkyl group) 	

